Correlated weights in infinite limits of deep convolutional neural networks

Adrià Garriga-Alonso, Mark van der Wilk
Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, PMLR 161:1998-2007, 2021.

Abstract

Infinite width limits of deep neural networks often have tractable forms. They have been used to analyse the behaviour of finite networks, as well as being useful methods in their own right. When investigating infinitely wide convolutional neural networks (CNNs), it was observed that the correlations arising from spatial weight sharing disappear in the infinite limit. This is undesirable, as spatial correlation is the main motivation behind CNNs. We show that the loss of this property is not a consequence of the infinite limit, but rather of choosing an independent weight prior. Correlating the weights maintains the correlations in the activations. Varying the amount of correlation interpolates between independent-weight limits and mean-pooling. Empirical evaluation of the infinitely wide network shows that optimal performance is achieved between the extremes, indicating that correlations can be useful.

Cite this Paper


BibTeX
@InProceedings{pmlr-v161-garriga-alonso21a, title = {Correlated weights in infinite limits of deep convolutional neural networks}, author = {Garriga-Alonso, Adri\`a and van der Wilk, Mark}, booktitle = {Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence}, pages = {1998--2007}, year = {2021}, editor = {de Campos, Cassio and Maathuis, Marloes H.}, volume = {161}, series = {Proceedings of Machine Learning Research}, month = {27--30 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v161/garriga-alonso21a/garriga-alonso21a.pdf}, url = {https://proceedings.mlr.press/v161/garriga-alonso21a.html}, abstract = {Infinite width limits of deep neural networks often have tractable forms. They have been used to analyse the behaviour of finite networks, as well as being useful methods in their own right. When investigating infinitely wide convolutional neural networks (CNNs), it was observed that the correlations arising from spatial weight sharing disappear in the infinite limit. This is undesirable, as spatial correlation is the main motivation behind CNNs. We show that the loss of this property is not a consequence of the infinite limit, but rather of choosing an independent weight prior. Correlating the weights maintains the correlations in the activations. Varying the amount of correlation interpolates between independent-weight limits and mean-pooling. Empirical evaluation of the infinitely wide network shows that optimal performance is achieved between the extremes, indicating that correlations can be useful.} }
Endnote
%0 Conference Paper %T Correlated weights in infinite limits of deep convolutional neural networks %A Adrià Garriga-Alonso %A Mark van der Wilk %B Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence %C Proceedings of Machine Learning Research %D 2021 %E Cassio de Campos %E Marloes H. Maathuis %F pmlr-v161-garriga-alonso21a %I PMLR %P 1998--2007 %U https://proceedings.mlr.press/v161/garriga-alonso21a.html %V 161 %X Infinite width limits of deep neural networks often have tractable forms. They have been used to analyse the behaviour of finite networks, as well as being useful methods in their own right. When investigating infinitely wide convolutional neural networks (CNNs), it was observed that the correlations arising from spatial weight sharing disappear in the infinite limit. This is undesirable, as spatial correlation is the main motivation behind CNNs. We show that the loss of this property is not a consequence of the infinite limit, but rather of choosing an independent weight prior. Correlating the weights maintains the correlations in the activations. Varying the amount of correlation interpolates between independent-weight limits and mean-pooling. Empirical evaluation of the infinitely wide network shows that optimal performance is achieved between the extremes, indicating that correlations can be useful.
APA
Garriga-Alonso, A. & van der Wilk, M.. (2021). Correlated weights in infinite limits of deep convolutional neural networks. Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, in Proceedings of Machine Learning Research 161:1998-2007 Available from https://proceedings.mlr.press/v161/garriga-alonso21a.html.

Related Material