Generative Archimedean copulas

Yuting Ng, Ali Hasan, Khalil Elkhalil, Vahid Tarokh
Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, PMLR 161:643-653, 2021.

Abstract

We propose a new generative modeling technique for learning multidimensional cumulative distribution functions (CDFs) in the form of copulas. Specifically, we consider certain classes of copulas known as Archimedean and hierarchical Archimedean copulas, popular for their parsimonious representation and ability to model different tail dependencies. We consider their representation as mixture models with Laplace transforms of latent random variables from generative neural networks. This alternative representation allows for computational efficiencies and easy sampling, especially in high dimensions. We describe multiple methods for optimizing the network parameters. Finally, we present empirical results that demonstrate the efficacy of our proposed method in learning multidimensional CDFs and its computational efficiency compared to existing methods.

Cite this Paper


BibTeX
@InProceedings{pmlr-v161-ng21a, title = {Generative Archimedean copulas}, author = {Ng, Yuting and Hasan, Ali and Elkhalil, Khalil and Tarokh, Vahid}, booktitle = {Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence}, pages = {643--653}, year = {2021}, editor = {de Campos, Cassio and Maathuis, Marloes H.}, volume = {161}, series = {Proceedings of Machine Learning Research}, month = {27--30 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v161/ng21a/ng21a.pdf}, url = {https://proceedings.mlr.press/v161/ng21a.html}, abstract = {We propose a new generative modeling technique for learning multidimensional cumulative distribution functions (CDFs) in the form of copulas. Specifically, we consider certain classes of copulas known as Archimedean and hierarchical Archimedean copulas, popular for their parsimonious representation and ability to model different tail dependencies. We consider their representation as mixture models with Laplace transforms of latent random variables from generative neural networks. This alternative representation allows for computational efficiencies and easy sampling, especially in high dimensions. We describe multiple methods for optimizing the network parameters. Finally, we present empirical results that demonstrate the efficacy of our proposed method in learning multidimensional CDFs and its computational efficiency compared to existing methods.} }
Endnote
%0 Conference Paper %T Generative Archimedean copulas %A Yuting Ng %A Ali Hasan %A Khalil Elkhalil %A Vahid Tarokh %B Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence %C Proceedings of Machine Learning Research %D 2021 %E Cassio de Campos %E Marloes H. Maathuis %F pmlr-v161-ng21a %I PMLR %P 643--653 %U https://proceedings.mlr.press/v161/ng21a.html %V 161 %X We propose a new generative modeling technique for learning multidimensional cumulative distribution functions (CDFs) in the form of copulas. Specifically, we consider certain classes of copulas known as Archimedean and hierarchical Archimedean copulas, popular for their parsimonious representation and ability to model different tail dependencies. We consider their representation as mixture models with Laplace transforms of latent random variables from generative neural networks. This alternative representation allows for computational efficiencies and easy sampling, especially in high dimensions. We describe multiple methods for optimizing the network parameters. Finally, we present empirical results that demonstrate the efficacy of our proposed method in learning multidimensional CDFs and its computational efficiency compared to existing methods.
APA
Ng, Y., Hasan, A., Elkhalil, K. & Tarokh, V.. (2021). Generative Archimedean copulas. Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, in Proceedings of Machine Learning Research 161:643-653 Available from https://proceedings.mlr.press/v161/ng21a.html.

Related Material