[edit]
Faster Convergence of Stochastic Gradient Langevin Dynamics for Non-Log-Concave Sampling
Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, PMLR 161:1152-1162, 2021.
Abstract
We provide a new convergence analysis of stochastic gradient Langevin dynamics (SGLD) for sampling from a class of distributions that can be non-log-concave. At the core of our approach is a novel conductance analysis of SGLD using an auxiliary time-reversible Markov Chain. Under certain conditions on the target distribution, we prove that $\tilde O(d^4\epsilon^{-2})$ stochastic gradient evaluations suffice to guarantee $\epsilon$-sampling error in terms of the total variation distance, where $d$ is the problem dimension. This improves existing results on the convergence rate of SGLD [Raginsky et al., 2017, Xu et al., 2018]. We further show that provided an additional Hessian Lipschitz condition on the log-density function, SGLD is guaranteed to achieve $\epsilon$-sampling error within $\tilde O(d^{15/4}\epsilon^{-3/2})$ stochastic gradient evaluations. Our proof technique provides a new way to study the convergence of Langevin based algorithms, and sheds some light on the design of fast stochastic gradient based sampling algorithms.