Optimal Algorithms for Mean Estimation under Local Differential Privacy

Hilal Asi, Vitaly Feldman, Kunal Talwar
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:1046-1056, 2022.

Abstract

We study the problem of mean estimation of $\ell_2$-bounded vectors under the constraint of local differential privacy. While the literature has a variety of algorithms that achieve the (asymptotic) optimal rates for this problem, the performance of these algorithms in practice can vary significantly due to varying (and often large) hidden constants. In this work, we investigate the question of designing the randomizer with the smallest variance. We show that PrivUnit (Bhowmick et al. 2018) with optimized parameters achieves the optimal variance among a large family of natural randomizers. To prove this result, we establish some properties of local randomizers, and use symmetrization arguments that allow us to write the optimal randomizer as the optimizer of a certain linear program. These structural results, which should extend to other problems, then allow us to show that the optimal randomizer belongs to the PrivUnit family. We also develop a new variant of PrivUnit based on the Gaussian distribution which is more amenable to mathematical analysis and enjoys the same optimality guarantees. This allows us to establish several useful properties on the exact constants of the optimal error as well as to numerically estimate these constants.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-asi22b, title = {Optimal Algorithms for Mean Estimation under Local Differential Privacy}, author = {Asi, Hilal and Feldman, Vitaly and Talwar, Kunal}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {1046--1056}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/asi22b/asi22b.pdf}, url = {https://proceedings.mlr.press/v162/asi22b.html}, abstract = {We study the problem of mean estimation of $\ell_2$-bounded vectors under the constraint of local differential privacy. While the literature has a variety of algorithms that achieve the (asymptotic) optimal rates for this problem, the performance of these algorithms in practice can vary significantly due to varying (and often large) hidden constants. In this work, we investigate the question of designing the randomizer with the smallest variance. We show that PrivUnit (Bhowmick et al. 2018) with optimized parameters achieves the optimal variance among a large family of natural randomizers. To prove this result, we establish some properties of local randomizers, and use symmetrization arguments that allow us to write the optimal randomizer as the optimizer of a certain linear program. These structural results, which should extend to other problems, then allow us to show that the optimal randomizer belongs to the PrivUnit family. We also develop a new variant of PrivUnit based on the Gaussian distribution which is more amenable to mathematical analysis and enjoys the same optimality guarantees. This allows us to establish several useful properties on the exact constants of the optimal error as well as to numerically estimate these constants.} }
Endnote
%0 Conference Paper %T Optimal Algorithms for Mean Estimation under Local Differential Privacy %A Hilal Asi %A Vitaly Feldman %A Kunal Talwar %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-asi22b %I PMLR %P 1046--1056 %U https://proceedings.mlr.press/v162/asi22b.html %V 162 %X We study the problem of mean estimation of $\ell_2$-bounded vectors under the constraint of local differential privacy. While the literature has a variety of algorithms that achieve the (asymptotic) optimal rates for this problem, the performance of these algorithms in practice can vary significantly due to varying (and often large) hidden constants. In this work, we investigate the question of designing the randomizer with the smallest variance. We show that PrivUnit (Bhowmick et al. 2018) with optimized parameters achieves the optimal variance among a large family of natural randomizers. To prove this result, we establish some properties of local randomizers, and use symmetrization arguments that allow us to write the optimal randomizer as the optimizer of a certain linear program. These structural results, which should extend to other problems, then allow us to show that the optimal randomizer belongs to the PrivUnit family. We also develop a new variant of PrivUnit based on the Gaussian distribution which is more amenable to mathematical analysis and enjoys the same optimality guarantees. This allows us to establish several useful properties on the exact constants of the optimal error as well as to numerically estimate these constants.
APA
Asi, H., Feldman, V. & Talwar, K.. (2022). Optimal Algorithms for Mean Estimation under Local Differential Privacy. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:1046-1056 Available from https://proceedings.mlr.press/v162/asi22b.html.

Related Material