Iterative Hard Thresholding with Adaptive Regularization: Sparser Solutions Without Sacrificing Runtime

Kyriakos Axiotis, Maxim Sviridenko
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:1175-1197, 2022.

Abstract

We propose a simple modification to the iterative hard thresholding (IHT) algorithm, which recovers asymptotically sparser solutions as a function of the condition number. When aiming to minimize a convex function f(x) with condition number $\kappa$ subject to x being an s-sparse vector, the standard IHT guarantee is a solution with relaxed sparsity $O(s\kappa^2)$, while our proposed algorithm, regularized IHT, returns a solution with sparsity $O(s\kappa)$. Our algorithm significantly improves over ARHT [Axiotis & Sviridenko, 2021] which also achieves $O(s\kappa)$, as it does not require re-optimization in each iteration (and so is much faster), is deterministic, and does not require knowledge of the optimal solution value f(x*) or the optimal sparsity level s. Our main technical tool is an adaptive regularization framework, in which the algorithm progressively learns the weights of an l_2 regularization term that will allow convergence to sparser solutions. We also apply this framework to low rank optimization, where we achieve a similar improvement of the best known condition number dependence from $\kappa^2$ to $\kappa$.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-axiotis22a, title = {Iterative Hard Thresholding with Adaptive Regularization: Sparser Solutions Without Sacrificing Runtime}, author = {Axiotis, Kyriakos and Sviridenko, Maxim}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {1175--1197}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/axiotis22a/axiotis22a.pdf}, url = {https://proceedings.mlr.press/v162/axiotis22a.html}, abstract = {We propose a simple modification to the iterative hard thresholding (IHT) algorithm, which recovers asymptotically sparser solutions as a function of the condition number. When aiming to minimize a convex function f(x) with condition number $\kappa$ subject to x being an s-sparse vector, the standard IHT guarantee is a solution with relaxed sparsity $O(s\kappa^2)$, while our proposed algorithm, regularized IHT, returns a solution with sparsity $O(s\kappa)$. Our algorithm significantly improves over ARHT [Axiotis & Sviridenko, 2021] which also achieves $O(s\kappa)$, as it does not require re-optimization in each iteration (and so is much faster), is deterministic, and does not require knowledge of the optimal solution value f(x*) or the optimal sparsity level s. Our main technical tool is an adaptive regularization framework, in which the algorithm progressively learns the weights of an l_2 regularization term that will allow convergence to sparser solutions. We also apply this framework to low rank optimization, where we achieve a similar improvement of the best known condition number dependence from $\kappa^2$ to $\kappa$.} }
Endnote
%0 Conference Paper %T Iterative Hard Thresholding with Adaptive Regularization: Sparser Solutions Without Sacrificing Runtime %A Kyriakos Axiotis %A Maxim Sviridenko %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-axiotis22a %I PMLR %P 1175--1197 %U https://proceedings.mlr.press/v162/axiotis22a.html %V 162 %X We propose a simple modification to the iterative hard thresholding (IHT) algorithm, which recovers asymptotically sparser solutions as a function of the condition number. When aiming to minimize a convex function f(x) with condition number $\kappa$ subject to x being an s-sparse vector, the standard IHT guarantee is a solution with relaxed sparsity $O(s\kappa^2)$, while our proposed algorithm, regularized IHT, returns a solution with sparsity $O(s\kappa)$. Our algorithm significantly improves over ARHT [Axiotis & Sviridenko, 2021] which also achieves $O(s\kappa)$, as it does not require re-optimization in each iteration (and so is much faster), is deterministic, and does not require knowledge of the optimal solution value f(x*) or the optimal sparsity level s. Our main technical tool is an adaptive regularization framework, in which the algorithm progressively learns the weights of an l_2 regularization term that will allow convergence to sparser solutions. We also apply this framework to low rank optimization, where we achieve a similar improvement of the best known condition number dependence from $\kappa^2$ to $\kappa$.
APA
Axiotis, K. & Sviridenko, M.. (2022). Iterative Hard Thresholding with Adaptive Regularization: Sparser Solutions Without Sacrificing Runtime. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:1175-1197 Available from https://proceedings.mlr.press/v162/axiotis22a.html.

Related Material