[edit]
A Hierarchical Transitive-Aligned Graph Kernel for Un-attributed Graphs
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:1327-1336, 2022.
Abstract
In this paper, we develop a new graph kernel, namely the Hierarchical Transitive-Aligned Kernel, by transitively aligning the vertices between graphs through a family of hierarchical prototype graphs. Comparing to most existing state-of-the-art graph kernels, the proposed kernel has three theoretical advantages. First, it incorporates the locational correspondence information between graphs into the kernel computation, and thus overcomes the shortcoming of ignoring structural correspondences arising in most R-convolution kernels. Second, it guarantees the transitivity between the correspondence information that is not available for most existing matching kernels. Third, it incorporates the information of all graphs under comparisons into the kernel computation process, and thus encapsulates richer characteristics. Experimental evaluations demonstrate the effectiveness of the new transitive-aligned kernel.