Nearly Optimal Catoni’s M-estimator for Infinite Variance

Sujay Bhatt, Guanhua Fang, Ping Li, Gennady Samorodnitsky
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:1925-1944, 2022.

Abstract

In this paper, we extend the remarkable M-estimator of Catoni \citep{Cat12} to situations where the variance is infinite. In particular, given a sequence of i.i.d random variables $\{X_i\}_{i=1}^n$ from distribution $\mathcal{D}$ over $\mathbb{R}$ with mean $\mu$, we only assume the existence of a known upper bound $\upsilon_{\varepsilon} > 0$ on the $(1+\varepsilon)^{th}$ central moment of the random variables, namely, for $\varepsilon \in (0,1]$ \[ \mathbb{E}_{X_1 \sim \mathcal{D}} \Big| X_1 - \mu \Big|^{1+\varepsilon} \leq \upsilon_{\varepsilon}. \]{The} extension is non-trivial owing to the difficulty in characterizing the roots of certain polynomials of degree smaller than $2$. The proposed estimator has the same order of magnitude and the same asymptotic constant as in \citet{Cat12}, but for the case of bounded moments. We further propose a version of the estimator that does not require even the knowledge of $\upsilon_{\varepsilon}$, but adapts the moment bound in a data-driven manner. Finally, to illustrate the usefulness of the derived non-asymptotic confidence bounds, we consider an application in multi-armed bandits and propose best arm identification algorithms, in the fixed confidence setting, that outperform the state of the art.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-bhatt22b, title = {Nearly Optimal Catoni’s M-estimator for Infinite Variance}, author = {Bhatt, Sujay and Fang, Guanhua and Li, Ping and Samorodnitsky, Gennady}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {1925--1944}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/bhatt22b/bhatt22b.pdf}, url = {https://proceedings.mlr.press/v162/bhatt22b.html}, abstract = {In this paper, we extend the remarkable M-estimator of Catoni \citep{Cat12} to situations where the variance is infinite. In particular, given a sequence of i.i.d random variables $\{X_i\}_{i=1}^n$ from distribution $\mathcal{D}$ over $\mathbb{R}$ with mean $\mu$, we only assume the existence of a known upper bound $\upsilon_{\varepsilon} > 0$ on the $(1+\varepsilon)^{th}$ central moment of the random variables, namely, for $\varepsilon \in (0,1]$ \[ \mathbb{E}_{X_1 \sim \mathcal{D}} \Big| X_1 - \mu \Big|^{1+\varepsilon} \leq \upsilon_{\varepsilon}. \]{The} extension is non-trivial owing to the difficulty in characterizing the roots of certain polynomials of degree smaller than $2$. The proposed estimator has the same order of magnitude and the same asymptotic constant as in \citet{Cat12}, but for the case of bounded moments. We further propose a version of the estimator that does not require even the knowledge of $\upsilon_{\varepsilon}$, but adapts the moment bound in a data-driven manner. Finally, to illustrate the usefulness of the derived non-asymptotic confidence bounds, we consider an application in multi-armed bandits and propose best arm identification algorithms, in the fixed confidence setting, that outperform the state of the art.} }
Endnote
%0 Conference Paper %T Nearly Optimal Catoni’s M-estimator for Infinite Variance %A Sujay Bhatt %A Guanhua Fang %A Ping Li %A Gennady Samorodnitsky %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-bhatt22b %I PMLR %P 1925--1944 %U https://proceedings.mlr.press/v162/bhatt22b.html %V 162 %X In this paper, we extend the remarkable M-estimator of Catoni \citep{Cat12} to situations where the variance is infinite. In particular, given a sequence of i.i.d random variables $\{X_i\}_{i=1}^n$ from distribution $\mathcal{D}$ over $\mathbb{R}$ with mean $\mu$, we only assume the existence of a known upper bound $\upsilon_{\varepsilon} > 0$ on the $(1+\varepsilon)^{th}$ central moment of the random variables, namely, for $\varepsilon \in (0,1]$ \[ \mathbb{E}_{X_1 \sim \mathcal{D}} \Big| X_1 - \mu \Big|^{1+\varepsilon} \leq \upsilon_{\varepsilon}. \]{The} extension is non-trivial owing to the difficulty in characterizing the roots of certain polynomials of degree smaller than $2$. The proposed estimator has the same order of magnitude and the same asymptotic constant as in \citet{Cat12}, but for the case of bounded moments. We further propose a version of the estimator that does not require even the knowledge of $\upsilon_{\varepsilon}$, but adapts the moment bound in a data-driven manner. Finally, to illustrate the usefulness of the derived non-asymptotic confidence bounds, we consider an application in multi-armed bandits and propose best arm identification algorithms, in the fixed confidence setting, that outperform the state of the art.
APA
Bhatt, S., Fang, G., Li, P. & Samorodnitsky, G.. (2022). Nearly Optimal Catoni’s M-estimator for Infinite Variance. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:1925-1944 Available from https://proceedings.mlr.press/v162/bhatt22b.html.

Related Material