Generalized Results for the Existence and Consistency of the MLE in the Bradley-Terry-Luce Model

Heejong Bong, Alessandro Rinaldo
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:2160-2177, 2022.

Abstract

Ranking problems based on pairwise comparisons, such as those arising in online gaming, often involve a large pool of items to order. In these situations, the gap in performance between any two items can be significant, and the smallest and largest winning probabilities can be very close to zero or one. Furthermore, each item may be compared only to a subset of all the items, so that not all pairwise comparisons are observed. In this paper, we study the performance of the Bradley-Terry-Luce model for ranking from pairwise comparison data under more realistic settings than those considered in the literature so far. In particular, we allow for near-degenerate winning probabilities and arbitrary comparison designs. We obtain novel results about the existence of the maximum likelihood estimator (MLE) and the corresponding $\ell_2$ estimation error without the bounded winning probability assumption commonly used in the literature and for arbitrary comparison graph topologies. Central to our approach is the reliance on the Fisher information matrix to express the dependence on the graph topologies and the impact of the values of the winning probabilities on the estimation risk and on the conditions for the existence of the MLE. Our bounds recover existing results as special cases but are more broadly applicable.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-bong22a, title = {Generalized Results for the Existence and Consistency of the {MLE} in the Bradley-Terry-Luce Model}, author = {Bong, Heejong and Rinaldo, Alessandro}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {2160--2177}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/bong22a/bong22a.pdf}, url = {https://proceedings.mlr.press/v162/bong22a.html}, abstract = {Ranking problems based on pairwise comparisons, such as those arising in online gaming, often involve a large pool of items to order. In these situations, the gap in performance between any two items can be significant, and the smallest and largest winning probabilities can be very close to zero or one. Furthermore, each item may be compared only to a subset of all the items, so that not all pairwise comparisons are observed. In this paper, we study the performance of the Bradley-Terry-Luce model for ranking from pairwise comparison data under more realistic settings than those considered in the literature so far. In particular, we allow for near-degenerate winning probabilities and arbitrary comparison designs. We obtain novel results about the existence of the maximum likelihood estimator (MLE) and the corresponding $\ell_2$ estimation error without the bounded winning probability assumption commonly used in the literature and for arbitrary comparison graph topologies. Central to our approach is the reliance on the Fisher information matrix to express the dependence on the graph topologies and the impact of the values of the winning probabilities on the estimation risk and on the conditions for the existence of the MLE. Our bounds recover existing results as special cases but are more broadly applicable.} }
Endnote
%0 Conference Paper %T Generalized Results for the Existence and Consistency of the MLE in the Bradley-Terry-Luce Model %A Heejong Bong %A Alessandro Rinaldo %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-bong22a %I PMLR %P 2160--2177 %U https://proceedings.mlr.press/v162/bong22a.html %V 162 %X Ranking problems based on pairwise comparisons, such as those arising in online gaming, often involve a large pool of items to order. In these situations, the gap in performance between any two items can be significant, and the smallest and largest winning probabilities can be very close to zero or one. Furthermore, each item may be compared only to a subset of all the items, so that not all pairwise comparisons are observed. In this paper, we study the performance of the Bradley-Terry-Luce model for ranking from pairwise comparison data under more realistic settings than those considered in the literature so far. In particular, we allow for near-degenerate winning probabilities and arbitrary comparison designs. We obtain novel results about the existence of the maximum likelihood estimator (MLE) and the corresponding $\ell_2$ estimation error without the bounded winning probability assumption commonly used in the literature and for arbitrary comparison graph topologies. Central to our approach is the reliance on the Fisher information matrix to express the dependence on the graph topologies and the impact of the values of the winning probabilities on the estimation risk and on the conditions for the existence of the MLE. Our bounds recover existing results as special cases but are more broadly applicable.
APA
Bong, H. & Rinaldo, A.. (2022). Generalized Results for the Existence and Consistency of the MLE in the Bradley-Terry-Luce Model. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:2160-2177 Available from https://proceedings.mlr.press/v162/bong22a.html.

Related Material