Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency

Qi Cai, Zhuoran Yang, Zhaoran Wang
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:2485-2522, 2022.

Abstract

We study reinforcement learning for partially observed Markov decision processes (POMDPs) with infinite observation and state spaces, which remains less investigated theoretically. To this end, we make the first attempt at bridging partial observability and function approximation for a class of POMDPs with a linear structure. In detail, we propose a reinforcement learning algorithm (Optimistic Exploration via Adversarial Integral Equation or OP-TENET) that attains an $\epsilon$-optimal policy within $O(1/\epsilon^2)$ episodes. In particular, the sample complexity scales polynomially in the intrinsic dimension of the linear structure and is independent of the size of the observation and state spaces. The sample efficiency of OP-TENET is enabled by a sequence of ingredients: (i) a Bellman operator with finite memory, which represents the value function in a recursive manner, (ii) the identification and estimation of such an operator via an adversarial integral equation, which features a smoothed discriminator tailored to the linear structure, and (iii) the exploration of the observation and state spaces via optimism, which is based on quantifying the uncertainty in the adversarial integral equation.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-cai22c, title = {Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency}, author = {Cai, Qi and Yang, Zhuoran and Wang, Zhaoran}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {2485--2522}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/cai22c/cai22c.pdf}, url = {https://proceedings.mlr.press/v162/cai22c.html}, abstract = {We study reinforcement learning for partially observed Markov decision processes (POMDPs) with infinite observation and state spaces, which remains less investigated theoretically. To this end, we make the first attempt at bridging partial observability and function approximation for a class of POMDPs with a linear structure. In detail, we propose a reinforcement learning algorithm (Optimistic Exploration via Adversarial Integral Equation or OP-TENET) that attains an $\epsilon$-optimal policy within $O(1/\epsilon^2)$ episodes. In particular, the sample complexity scales polynomially in the intrinsic dimension of the linear structure and is independent of the size of the observation and state spaces. The sample efficiency of OP-TENET is enabled by a sequence of ingredients: (i) a Bellman operator with finite memory, which represents the value function in a recursive manner, (ii) the identification and estimation of such an operator via an adversarial integral equation, which features a smoothed discriminator tailored to the linear structure, and (iii) the exploration of the observation and state spaces via optimism, which is based on quantifying the uncertainty in the adversarial integral equation.} }
Endnote
%0 Conference Paper %T Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency %A Qi Cai %A Zhuoran Yang %A Zhaoran Wang %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-cai22c %I PMLR %P 2485--2522 %U https://proceedings.mlr.press/v162/cai22c.html %V 162 %X We study reinforcement learning for partially observed Markov decision processes (POMDPs) with infinite observation and state spaces, which remains less investigated theoretically. To this end, we make the first attempt at bridging partial observability and function approximation for a class of POMDPs with a linear structure. In detail, we propose a reinforcement learning algorithm (Optimistic Exploration via Adversarial Integral Equation or OP-TENET) that attains an $\epsilon$-optimal policy within $O(1/\epsilon^2)$ episodes. In particular, the sample complexity scales polynomially in the intrinsic dimension of the linear structure and is independent of the size of the observation and state spaces. The sample efficiency of OP-TENET is enabled by a sequence of ingredients: (i) a Bellman operator with finite memory, which represents the value function in a recursive manner, (ii) the identification and estimation of such an operator via an adversarial integral equation, which features a smoothed discriminator tailored to the linear structure, and (iii) the exploration of the observation and state spaces via optimism, which is based on quantifying the uncertainty in the adversarial integral equation.
APA
Cai, Q., Yang, Z. & Wang, Z.. (2022). Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:2485-2522 Available from https://proceedings.mlr.press/v162/cai22c.html.

Related Material