Robust Meta-learning with Sampling Noise and Label Noise via Eigen-Reptile

Dong Chen, Lingfei Wu, Siliang Tang, Xiao Yun, Bo Long, Yueting Zhuang
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:3662-3678, 2022.

Abstract

Recent years have seen a surge of interest in meta-learning techniques for tackling the few-shot learning (FSL) problem. However, the meta-learner is prone to overfitting since there are only a few available samples, which can be identified as sampling noise on a clean dataset. Besides, when handling the data with noisy labels, the meta-learner could be extremely sensitive to label noise on a corrupted dataset. To address these two challenges, we present Eigen-Reptile (ER) that updates the meta-parameters with the main direction of historical task-specific parameters. Specifically, the main direction is computed in a fast way, where the scale of the calculated matrix is related to the number of gradient steps for the specific task instead of the number of parameters. Furthermore, to obtain a more accurate main direction for Eigen-Reptile in the presence of many noisy labels, we further propose Introspective Self-paced Learning (ISPL). We have theoretically and experimentally demonstrated the soundness and effectiveness of the proposed Eigen-Reptile and ISPL. Particularly, our experiments on different tasks show that the proposed method is able to outperform or achieve highly competitive performance compared with other gradient-based methods with or without noisy labels. The code and data for the proposed method are provided for research purposes https://github.com/Anfeather/Eigen-Reptile.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-chen22aa, title = {Robust Meta-learning with Sampling Noise and Label Noise via Eigen-Reptile}, author = {Chen, Dong and Wu, Lingfei and Tang, Siliang and Yun, Xiao and Long, Bo and Zhuang, Yueting}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {3662--3678}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/chen22aa/chen22aa.pdf}, url = {https://proceedings.mlr.press/v162/chen22aa.html}, abstract = {Recent years have seen a surge of interest in meta-learning techniques for tackling the few-shot learning (FSL) problem. However, the meta-learner is prone to overfitting since there are only a few available samples, which can be identified as sampling noise on a clean dataset. Besides, when handling the data with noisy labels, the meta-learner could be extremely sensitive to label noise on a corrupted dataset. To address these two challenges, we present Eigen-Reptile (ER) that updates the meta-parameters with the main direction of historical task-specific parameters. Specifically, the main direction is computed in a fast way, where the scale of the calculated matrix is related to the number of gradient steps for the specific task instead of the number of parameters. Furthermore, to obtain a more accurate main direction for Eigen-Reptile in the presence of many noisy labels, we further propose Introspective Self-paced Learning (ISPL). We have theoretically and experimentally demonstrated the soundness and effectiveness of the proposed Eigen-Reptile and ISPL. Particularly, our experiments on different tasks show that the proposed method is able to outperform or achieve highly competitive performance compared with other gradient-based methods with or without noisy labels. The code and data for the proposed method are provided for research purposes https://github.com/Anfeather/Eigen-Reptile.} }
Endnote
%0 Conference Paper %T Robust Meta-learning with Sampling Noise and Label Noise via Eigen-Reptile %A Dong Chen %A Lingfei Wu %A Siliang Tang %A Xiao Yun %A Bo Long %A Yueting Zhuang %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-chen22aa %I PMLR %P 3662--3678 %U https://proceedings.mlr.press/v162/chen22aa.html %V 162 %X Recent years have seen a surge of interest in meta-learning techniques for tackling the few-shot learning (FSL) problem. However, the meta-learner is prone to overfitting since there are only a few available samples, which can be identified as sampling noise on a clean dataset. Besides, when handling the data with noisy labels, the meta-learner could be extremely sensitive to label noise on a corrupted dataset. To address these two challenges, we present Eigen-Reptile (ER) that updates the meta-parameters with the main direction of historical task-specific parameters. Specifically, the main direction is computed in a fast way, where the scale of the calculated matrix is related to the number of gradient steps for the specific task instead of the number of parameters. Furthermore, to obtain a more accurate main direction for Eigen-Reptile in the presence of many noisy labels, we further propose Introspective Self-paced Learning (ISPL). We have theoretically and experimentally demonstrated the soundness and effectiveness of the proposed Eigen-Reptile and ISPL. Particularly, our experiments on different tasks show that the proposed method is able to outperform or achieve highly competitive performance compared with other gradient-based methods with or without noisy labels. The code and data for the proposed method are provided for research purposes https://github.com/Anfeather/Eigen-Reptile.
APA
Chen, D., Wu, L., Tang, S., Yun, X., Long, B. & Zhuang, Y.. (2022). Robust Meta-learning with Sampling Noise and Label Noise via Eigen-Reptile. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:3662-3678 Available from https://proceedings.mlr.press/v162/chen22aa.html.

Related Material