[edit]
On the Sample Complexity of Learning Infinite-horizon Discounted Linear Kernel MDPs
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:3149-3183, 2022.
Abstract
We study reinforcement learning for infinite-horizon discounted linear kernel MDPs, where the transition probability function is linear in a predefined feature mapping. Existing UCLK \citep{zhou2020provably} algorithm for this setting only has a regret guarantee, which cannot lead to a tight sample complexity bound. In this paper, we extend the uniform-PAC sample complexity from episodic setting to the infinite-horizon discounted setting, and propose a novel algorithm dubbed UPAC-UCLK that achieves an $\Tilde{O}\big(d^2/((1-\gamma)^4\epsilon^2)+1/((1-\gamma)^6\epsilon^2)\big)$ uniform-PAC sample complexity, where $d$ is the dimension of the feature mapping, $\gamma \in(0,1)$ is the discount factor of the MDP and $\epsilon$ is the accuracy parameter. To the best of our knowledge, this is the first $\tilde{O}(1/\epsilon^2)$ sample complexity bound for learning infinite-horizon discounted MDPs with linear function approximation (without access to the generative model).