Learning Mixtures of Linear Dynamical Systems

Yanxi Chen, H. Vincent Poor
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:3507-3557, 2022.

Abstract

We study the problem of learning a mixture of multiple linear dynamical systems (LDSs) from unlabeled short sample trajectories, each generated by one of the LDS models. Despite the wide applicability of mixture models for time-series data, learning algorithms that come with end-to-end performance guarantees are largely absent from existing literature. There are multiple sources of technical challenges, including but not limited to (1) the presence of latent variables (i.e. the unknown labels of trajectories); (2) the possibility that the sample trajectories might have lengths much smaller than the dimension $d$ of the LDS models; and (3) the complicated temporal dependence inherent to time-series data. To tackle these challenges, we develop a two-stage meta-algorithm, which is guaranteed to efficiently recover each ground-truth LDS model up to error $\tilde{O}(\sqrt{d/T})$, where $T$ is the total sample size. We validate our theoretical studies with numerical experiments, confirming the efficacy of the proposed algorithm.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-chen22t, title = {Learning Mixtures of Linear Dynamical Systems}, author = {Chen, Yanxi and Poor, H. Vincent}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {3507--3557}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/chen22t/chen22t.pdf}, url = {https://proceedings.mlr.press/v162/chen22t.html}, abstract = {We study the problem of learning a mixture of multiple linear dynamical systems (LDSs) from unlabeled short sample trajectories, each generated by one of the LDS models. Despite the wide applicability of mixture models for time-series data, learning algorithms that come with end-to-end performance guarantees are largely absent from existing literature. There are multiple sources of technical challenges, including but not limited to (1) the presence of latent variables (i.e. the unknown labels of trajectories); (2) the possibility that the sample trajectories might have lengths much smaller than the dimension $d$ of the LDS models; and (3) the complicated temporal dependence inherent to time-series data. To tackle these challenges, we develop a two-stage meta-algorithm, which is guaranteed to efficiently recover each ground-truth LDS model up to error $\tilde{O}(\sqrt{d/T})$, where $T$ is the total sample size. We validate our theoretical studies with numerical experiments, confirming the efficacy of the proposed algorithm.} }
Endnote
%0 Conference Paper %T Learning Mixtures of Linear Dynamical Systems %A Yanxi Chen %A H. Vincent Poor %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-chen22t %I PMLR %P 3507--3557 %U https://proceedings.mlr.press/v162/chen22t.html %V 162 %X We study the problem of learning a mixture of multiple linear dynamical systems (LDSs) from unlabeled short sample trajectories, each generated by one of the LDS models. Despite the wide applicability of mixture models for time-series data, learning algorithms that come with end-to-end performance guarantees are largely absent from existing literature. There are multiple sources of technical challenges, including but not limited to (1) the presence of latent variables (i.e. the unknown labels of trajectories); (2) the possibility that the sample trajectories might have lengths much smaller than the dimension $d$ of the LDS models; and (3) the complicated temporal dependence inherent to time-series data. To tackle these challenges, we develop a two-stage meta-algorithm, which is guaranteed to efficiently recover each ground-truth LDS model up to error $\tilde{O}(\sqrt{d/T})$, where $T$ is the total sample size. We validate our theoretical studies with numerical experiments, confirming the efficacy of the proposed algorithm.
APA
Chen, Y. & Poor, H.V.. (2022). Learning Mixtures of Linear Dynamical Systems. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:3507-3557 Available from https://proceedings.mlr.press/v162/chen22t.html.

Related Material