Counterfactual Transportability: A Formal Approach

Juan D Correa, Sanghack Lee, Elias Bareinboim
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:4370-4390, 2022.

Abstract

Generalizing causal knowledge across environments is a common challenge shared across many of the data-driven disciplines, including AI and ML. Experiments are usually performed in one environment (e.g., in a lab, on Earth, in a training ground), almost invariably, with the intent of being used elsewhere (e.g., outside the lab, on Mars, in the real world), in an environment that is related but somewhat different than the original one, where certain conditions and mechanisms are likely to change. This generalization task has been studied in the causal inference literature under the rubric of transportability (Pearl and Bareinboim, 2011). While most transportability works focused on generalizing associational and interventional distributions, the generalization of counterfactual distributions has not been formally studied. In this paper, we investigate the transportability of counterfactuals from an arbitrary combination of observational and experimental distributions coming from disparate domains. Specifically, we introduce a sufficient and necessary graphical condition and develop an efficient, sound, and complete algorithm for transporting counterfactual quantities across domains in nonparametric settings. Failure of the algorithm implies the impossibility of generalizing the target counterfactual from the available data without further assumptions.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-correa22a, title = {Counterfactual Transportability: A Formal Approach}, author = {Correa, Juan D and Lee, Sanghack and Bareinboim, Elias}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {4370--4390}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/correa22a/correa22a.pdf}, url = {https://proceedings.mlr.press/v162/correa22a.html}, abstract = {Generalizing causal knowledge across environments is a common challenge shared across many of the data-driven disciplines, including AI and ML. Experiments are usually performed in one environment (e.g., in a lab, on Earth, in a training ground), almost invariably, with the intent of being used elsewhere (e.g., outside the lab, on Mars, in the real world), in an environment that is related but somewhat different than the original one, where certain conditions and mechanisms are likely to change. This generalization task has been studied in the causal inference literature under the rubric of transportability (Pearl and Bareinboim, 2011). While most transportability works focused on generalizing associational and interventional distributions, the generalization of counterfactual distributions has not been formally studied. In this paper, we investigate the transportability of counterfactuals from an arbitrary combination of observational and experimental distributions coming from disparate domains. Specifically, we introduce a sufficient and necessary graphical condition and develop an efficient, sound, and complete algorithm for transporting counterfactual quantities across domains in nonparametric settings. Failure of the algorithm implies the impossibility of generalizing the target counterfactual from the available data without further assumptions.} }
Endnote
%0 Conference Paper %T Counterfactual Transportability: A Formal Approach %A Juan D Correa %A Sanghack Lee %A Elias Bareinboim %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-correa22a %I PMLR %P 4370--4390 %U https://proceedings.mlr.press/v162/correa22a.html %V 162 %X Generalizing causal knowledge across environments is a common challenge shared across many of the data-driven disciplines, including AI and ML. Experiments are usually performed in one environment (e.g., in a lab, on Earth, in a training ground), almost invariably, with the intent of being used elsewhere (e.g., outside the lab, on Mars, in the real world), in an environment that is related but somewhat different than the original one, where certain conditions and mechanisms are likely to change. This generalization task has been studied in the causal inference literature under the rubric of transportability (Pearl and Bareinboim, 2011). While most transportability works focused on generalizing associational and interventional distributions, the generalization of counterfactual distributions has not been formally studied. In this paper, we investigate the transportability of counterfactuals from an arbitrary combination of observational and experimental distributions coming from disparate domains. Specifically, we introduce a sufficient and necessary graphical condition and develop an efficient, sound, and complete algorithm for transporting counterfactual quantities across domains in nonparametric settings. Failure of the algorithm implies the impossibility of generalizing the target counterfactual from the available data without further assumptions.
APA
Correa, J.D., Lee, S. & Bareinboim, E.. (2022). Counterfactual Transportability: A Formal Approach. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:4370-4390 Available from https://proceedings.mlr.press/v162/correa22a.html.

Related Material