Local Linear Convergence of Douglas-Rachford for Linear Programming: a Probabilistic Analysis

Oisin Faust, Hamza Fawzi
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:6358-6372, 2022.

Abstract

Douglas-Rachford splitting/ADMM (henceforth DRS) is a very popular algorithm for solving convex optimisation problems to low or moderate accuracy, and in particular for solving large-scale linear programs. Despite recent progress, obtaining highly accurate solutions to linear programs with DRS remains elusive. In this paper we analyze the local linear convergence rate $r$ of the DRS method for random linear programs, and give explicit and tight bounds on $r$. We show that $1-r^2$ is typically of the order of $m^{-1}(n-m)^{-1}$, where $n$ is the number of variables and $m$ is the number of constraints. This provides a quantitative explanation for the very slow convergence of DRS/ADMM on random LPs. The proof of our result relies on an established characterisation of the linear rate of convergence as the cosine of the Friedrichs angle between two subspaces associated to the problem. We also show that the cosecant of this angle can be interpreted as a condition number for the LP. The proof of our result relies on a characterization of the linear rate of convergence as the cosine of the Friedrichs angle between two subspaces associated to the problem. We also show that the cosecant of this angle can be interpreted as a condition number for the LP.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-faust22a, title = {Local Linear Convergence of Douglas-Rachford for Linear Programming: a Probabilistic Analysis}, author = {Faust, Oisin and Fawzi, Hamza}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {6358--6372}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/faust22a/faust22a.pdf}, url = {https://proceedings.mlr.press/v162/faust22a.html}, abstract = {Douglas-Rachford splitting/ADMM (henceforth DRS) is a very popular algorithm for solving convex optimisation problems to low or moderate accuracy, and in particular for solving large-scale linear programs. Despite recent progress, obtaining highly accurate solutions to linear programs with DRS remains elusive. In this paper we analyze the local linear convergence rate $r$ of the DRS method for random linear programs, and give explicit and tight bounds on $r$. We show that $1-r^2$ is typically of the order of $m^{-1}(n-m)^{-1}$, where $n$ is the number of variables and $m$ is the number of constraints. This provides a quantitative explanation for the very slow convergence of DRS/ADMM on random LPs. The proof of our result relies on an established characterisation of the linear rate of convergence as the cosine of the Friedrichs angle between two subspaces associated to the problem. We also show that the cosecant of this angle can be interpreted as a condition number for the LP. The proof of our result relies on a characterization of the linear rate of convergence as the cosine of the Friedrichs angle between two subspaces associated to the problem. We also show that the cosecant of this angle can be interpreted as a condition number for the LP.} }
Endnote
%0 Conference Paper %T Local Linear Convergence of Douglas-Rachford for Linear Programming: a Probabilistic Analysis %A Oisin Faust %A Hamza Fawzi %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-faust22a %I PMLR %P 6358--6372 %U https://proceedings.mlr.press/v162/faust22a.html %V 162 %X Douglas-Rachford splitting/ADMM (henceforth DRS) is a very popular algorithm for solving convex optimisation problems to low or moderate accuracy, and in particular for solving large-scale linear programs. Despite recent progress, obtaining highly accurate solutions to linear programs with DRS remains elusive. In this paper we analyze the local linear convergence rate $r$ of the DRS method for random linear programs, and give explicit and tight bounds on $r$. We show that $1-r^2$ is typically of the order of $m^{-1}(n-m)^{-1}$, where $n$ is the number of variables and $m$ is the number of constraints. This provides a quantitative explanation for the very slow convergence of DRS/ADMM on random LPs. The proof of our result relies on an established characterisation of the linear rate of convergence as the cosine of the Friedrichs angle between two subspaces associated to the problem. We also show that the cosecant of this angle can be interpreted as a condition number for the LP. The proof of our result relies on a characterization of the linear rate of convergence as the cosine of the Friedrichs angle between two subspaces associated to the problem. We also show that the cosecant of this angle can be interpreted as a condition number for the LP.
APA
Faust, O. & Fawzi, H.. (2022). Local Linear Convergence of Douglas-Rachford for Linear Programming: a Probabilistic Analysis. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:6358-6372 Available from https://proceedings.mlr.press/v162/faust22a.html.

Related Material