Exploring the Gap between Collapsed & Whitened Features in Self-Supervised Learning

Bobby He, Mete Ozay
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:8613-8634, 2022.

Abstract

Avoiding feature collapse, when a Neural Network (NN) encoder maps all inputs to a constant vector, is a shared implicit desideratum of various methodological advances in self-supervised learning (SSL). To that end, whitened features have been proposed as an explicit objective to ensure uncollapsed features \cite{zbontar2021barlow,ermolov2021whitening,hua2021feature,bardes2022vicreg}. We identify power law behaviour in eigenvalue decay, parameterised by exponent $\beta{\geq}0$, as a spectrum that bridges between the collapsed & whitened feature extremes. We provide theoretical & empirical evidence highlighting the factors in SSL, like projection layers & regularisation strength, that influence eigenvalue decay rate, & demonstrate that the degree of feature whitening affects generalisation, particularly in label scarce regimes. We use our insights to motivate a novel method, PMP (PostMan-Pat), which efficiently post-processes a pretrained encoder to enforce eigenvalue decay rate with power law exponent $\beta$, & find that PostMan-Pat delivers improved label efficiency and transferability across a range of SSL methods and encoder architectures.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-he22c, title = {Exploring the Gap between Collapsed & Whitened Features in Self-Supervised Learning}, author = {He, Bobby and Ozay, Mete}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {8613--8634}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/he22c/he22c.pdf}, url = {https://proceedings.mlr.press/v162/he22c.html}, abstract = {Avoiding feature collapse, when a Neural Network (NN) encoder maps all inputs to a constant vector, is a shared implicit desideratum of various methodological advances in self-supervised learning (SSL). To that end, whitened features have been proposed as an explicit objective to ensure uncollapsed features \cite{zbontar2021barlow,ermolov2021whitening,hua2021feature,bardes2022vicreg}. We identify power law behaviour in eigenvalue decay, parameterised by exponent $\beta{\geq}0$, as a spectrum that bridges between the collapsed & whitened feature extremes. We provide theoretical & empirical evidence highlighting the factors in SSL, like projection layers & regularisation strength, that influence eigenvalue decay rate, & demonstrate that the degree of feature whitening affects generalisation, particularly in label scarce regimes. We use our insights to motivate a novel method, PMP (PostMan-Pat), which efficiently post-processes a pretrained encoder to enforce eigenvalue decay rate with power law exponent $\beta$, & find that PostMan-Pat delivers improved label efficiency and transferability across a range of SSL methods and encoder architectures.} }
Endnote
%0 Conference Paper %T Exploring the Gap between Collapsed & Whitened Features in Self-Supervised Learning %A Bobby He %A Mete Ozay %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-he22c %I PMLR %P 8613--8634 %U https://proceedings.mlr.press/v162/he22c.html %V 162 %X Avoiding feature collapse, when a Neural Network (NN) encoder maps all inputs to a constant vector, is a shared implicit desideratum of various methodological advances in self-supervised learning (SSL). To that end, whitened features have been proposed as an explicit objective to ensure uncollapsed features \cite{zbontar2021barlow,ermolov2021whitening,hua2021feature,bardes2022vicreg}. We identify power law behaviour in eigenvalue decay, parameterised by exponent $\beta{\geq}0$, as a spectrum that bridges between the collapsed & whitened feature extremes. We provide theoretical & empirical evidence highlighting the factors in SSL, like projection layers & regularisation strength, that influence eigenvalue decay rate, & demonstrate that the degree of feature whitening affects generalisation, particularly in label scarce regimes. We use our insights to motivate a novel method, PMP (PostMan-Pat), which efficiently post-processes a pretrained encoder to enforce eigenvalue decay rate with power law exponent $\beta$, & find that PostMan-Pat delivers improved label efficiency and transferability across a range of SSL methods and encoder architectures.
APA
He, B. & Ozay, M.. (2022). Exploring the Gap between Collapsed & Whitened Features in Self-Supervised Learning. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:8613-8634 Available from https://proceedings.mlr.press/v162/he22c.html.

Related Material