Sketching Algorithms and Lower Bounds for Ridge Regression

Praneeth Kacham, David Woodruff
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:10539-10556, 2022.

Abstract

We give a sketching-based iterative algorithm that computes a $1+\varepsilon$ approximate solution for the ridge regression problem $\min_x \|Ax-b\|_2^2 +\lambda\|x\|_2^2$ where $A \in R^{n \times d}$ with $d \ge n$. Our algorithm, for a constant number of iterations (requiring a constant number of passes over the input), improves upon earlier work (Chowdhury et al.) by requiring that the sketching matrix only has a weaker Approximate Matrix Multiplication (AMM) guarantee that depends on $\varepsilon$, along with a constant subspace embedding guarantee. The earlier work instead requires that the sketching matrix has a subspace embedding guarantee that depends on $\varepsilon$. For example, to produce a $1+\varepsilon$ approximate solution in $1$ iteration, which requires $2$ passes over the input, our algorithm requires the OSNAP embedding to have $m= O(n\sigma^2/\lambda\varepsilon)$ rows with a sparsity parameter $s = O(\log(n))$, whereas the earlier algorithm of Chowdhury et al. with the same number of rows of OSNAP requires a sparsity $s = O(\sqrt{\sigma^2/\lambda\varepsilon} \cdot \log(n))$, where $\sigma = \opnorm{A}$ is the spectral norm of the matrix $A$. We also show that this algorithm can be used to give faster algorithms for kernel ridge regression. Finally, we show that the sketch size required for our algorithm is essentially optimal for a natural framework of algorithms for ridge regression by proving lower bounds on oblivious sketching matrices for AMM. The sketch size lower bounds for AMM may be of independent interest.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-kacham22a, title = {Sketching Algorithms and Lower Bounds for Ridge Regression}, author = {Kacham, Praneeth and Woodruff, David}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {10539--10556}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/kacham22a/kacham22a.pdf}, url = {https://proceedings.mlr.press/v162/kacham22a.html}, abstract = {We give a sketching-based iterative algorithm that computes a $1+\varepsilon$ approximate solution for the ridge regression problem $\min_x \|Ax-b\|_2^2 +\lambda\|x\|_2^2$ where $A \in R^{n \times d}$ with $d \ge n$. Our algorithm, for a constant number of iterations (requiring a constant number of passes over the input), improves upon earlier work (Chowdhury et al.) by requiring that the sketching matrix only has a weaker Approximate Matrix Multiplication (AMM) guarantee that depends on $\varepsilon$, along with a constant subspace embedding guarantee. The earlier work instead requires that the sketching matrix has a subspace embedding guarantee that depends on $\varepsilon$. For example, to produce a $1+\varepsilon$ approximate solution in $1$ iteration, which requires $2$ passes over the input, our algorithm requires the OSNAP embedding to have $m= O(n\sigma^2/\lambda\varepsilon)$ rows with a sparsity parameter $s = O(\log(n))$, whereas the earlier algorithm of Chowdhury et al. with the same number of rows of OSNAP requires a sparsity $s = O(\sqrt{\sigma^2/\lambda\varepsilon} \cdot \log(n))$, where $\sigma = \opnorm{A}$ is the spectral norm of the matrix $A$. We also show that this algorithm can be used to give faster algorithms for kernel ridge regression. Finally, we show that the sketch size required for our algorithm is essentially optimal for a natural framework of algorithms for ridge regression by proving lower bounds on oblivious sketching matrices for AMM. The sketch size lower bounds for AMM may be of independent interest.} }
Endnote
%0 Conference Paper %T Sketching Algorithms and Lower Bounds for Ridge Regression %A Praneeth Kacham %A David Woodruff %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-kacham22a %I PMLR %P 10539--10556 %U https://proceedings.mlr.press/v162/kacham22a.html %V 162 %X We give a sketching-based iterative algorithm that computes a $1+\varepsilon$ approximate solution for the ridge regression problem $\min_x \|Ax-b\|_2^2 +\lambda\|x\|_2^2$ where $A \in R^{n \times d}$ with $d \ge n$. Our algorithm, for a constant number of iterations (requiring a constant number of passes over the input), improves upon earlier work (Chowdhury et al.) by requiring that the sketching matrix only has a weaker Approximate Matrix Multiplication (AMM) guarantee that depends on $\varepsilon$, along with a constant subspace embedding guarantee. The earlier work instead requires that the sketching matrix has a subspace embedding guarantee that depends on $\varepsilon$. For example, to produce a $1+\varepsilon$ approximate solution in $1$ iteration, which requires $2$ passes over the input, our algorithm requires the OSNAP embedding to have $m= O(n\sigma^2/\lambda\varepsilon)$ rows with a sparsity parameter $s = O(\log(n))$, whereas the earlier algorithm of Chowdhury et al. with the same number of rows of OSNAP requires a sparsity $s = O(\sqrt{\sigma^2/\lambda\varepsilon} \cdot \log(n))$, where $\sigma = \opnorm{A}$ is the spectral norm of the matrix $A$. We also show that this algorithm can be used to give faster algorithms for kernel ridge regression. Finally, we show that the sketch size required for our algorithm is essentially optimal for a natural framework of algorithms for ridge regression by proving lower bounds on oblivious sketching matrices for AMM. The sketch size lower bounds for AMM may be of independent interest.
APA
Kacham, P. & Woodruff, D.. (2022). Sketching Algorithms and Lower Bounds for Ridge Regression. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:10539-10556 Available from https://proceedings.mlr.press/v162/kacham22a.html.

Related Material