Exploiting Redundancy: Separable Group Convolutional Networks on Lie Groups

David M. Knigge, David W Romero, Erik J Bekkers
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:11359-11386, 2022.

Abstract

Group convolutional neural networks (G-CNNs) have been shown to increase parameter efficiency and model accuracy by incorporating geometric inductive biases. In this work, we investigate the properties of representations learned by regular G-CNNs, and show considerable parameter redundancy in group convolution kernels. This finding motivates further weight-tying by sharing convolution kernels over subgroups. To this end, we introduce convolution kernels that are separable over the subgroup and channel dimensions. In order to obtain equivariance to arbitrary affine Lie groups we provide a continuous parameterisation of separable convolution kernels. We evaluate our approach across several vision datasets, and show that our weight sharing leads to improved performance and computational efficiency. In many settings, separable G-CNNs outperform their non-separable counterpart, while only using a fraction of their training time. In addition, thanks to the increase in computational efficiency, we are able to implement G-CNNs equivariant to the $\mathrm{Sim(2)}$ group; the group of dilations, rotations and translations of the plane. $\mathrm{Sim(2)}$-equivariance further improves performance on all tasks considered, and achieves state-of-the-art performance on rotated MNIST.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-knigge22a, title = {Exploiting Redundancy: Separable Group Convolutional Networks on Lie Groups}, author = {Knigge, David M. and Romero, David W and Bekkers, Erik J}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {11359--11386}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/knigge22a/knigge22a.pdf}, url = {https://proceedings.mlr.press/v162/knigge22a.html}, abstract = {Group convolutional neural networks (G-CNNs) have been shown to increase parameter efficiency and model accuracy by incorporating geometric inductive biases. In this work, we investigate the properties of representations learned by regular G-CNNs, and show considerable parameter redundancy in group convolution kernels. This finding motivates further weight-tying by sharing convolution kernels over subgroups. To this end, we introduce convolution kernels that are separable over the subgroup and channel dimensions. In order to obtain equivariance to arbitrary affine Lie groups we provide a continuous parameterisation of separable convolution kernels. We evaluate our approach across several vision datasets, and show that our weight sharing leads to improved performance and computational efficiency. In many settings, separable G-CNNs outperform their non-separable counterpart, while only using a fraction of their training time. In addition, thanks to the increase in computational efficiency, we are able to implement G-CNNs equivariant to the $\mathrm{Sim(2)}$ group; the group of dilations, rotations and translations of the plane. $\mathrm{Sim(2)}$-equivariance further improves performance on all tasks considered, and achieves state-of-the-art performance on rotated MNIST.} }
Endnote
%0 Conference Paper %T Exploiting Redundancy: Separable Group Convolutional Networks on Lie Groups %A David M. Knigge %A David W Romero %A Erik J Bekkers %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-knigge22a %I PMLR %P 11359--11386 %U https://proceedings.mlr.press/v162/knigge22a.html %V 162 %X Group convolutional neural networks (G-CNNs) have been shown to increase parameter efficiency and model accuracy by incorporating geometric inductive biases. In this work, we investigate the properties of representations learned by regular G-CNNs, and show considerable parameter redundancy in group convolution kernels. This finding motivates further weight-tying by sharing convolution kernels over subgroups. To this end, we introduce convolution kernels that are separable over the subgroup and channel dimensions. In order to obtain equivariance to arbitrary affine Lie groups we provide a continuous parameterisation of separable convolution kernels. We evaluate our approach across several vision datasets, and show that our weight sharing leads to improved performance and computational efficiency. In many settings, separable G-CNNs outperform their non-separable counterpart, while only using a fraction of their training time. In addition, thanks to the increase in computational efficiency, we are able to implement G-CNNs equivariant to the $\mathrm{Sim(2)}$ group; the group of dilations, rotations and translations of the plane. $\mathrm{Sim(2)}$-equivariance further improves performance on all tasks considered, and achieves state-of-the-art performance on rotated MNIST.
APA
Knigge, D.M., Romero, D.W. & Bekkers, E.J.. (2022). Exploiting Redundancy: Separable Group Convolutional Networks on Lie Groups. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:11359-11386 Available from https://proceedings.mlr.press/v162/knigge22a.html.

Related Material