Controlling Conditional Language Models without Catastrophic Forgetting

Tomasz Korbak, Hady Elsahar, German Kruszewski, Marc Dymetman
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:11499-11528, 2022.

Abstract

Machine learning is shifting towards general-purpose pretrained generative models, trained in a self-supervised manner on large amounts of data, which can then be applied to solve a large number of tasks. However, due to their generic training methodology, these models often fail to meet some of the downstream requirements (e.g., hallucinations in abstractive summarization or style violations in code generation). This raises the important question of how to adapt pre-trained generative models to meet all requirements without destroying their general capabilities ("catastrophic forgetting"). Recent work has proposed to solve this problem by representing task-specific requirements through energy-based models (EBMs) and approximating these EBMs using distributional policy gradients (DPG). Despite its effectiveness, this approach is however limited to unconditional distributions. In this paper, we extend DPG to conditional tasks by proposing Conditional DPG (CDPG). We evaluate CDPG on four different control objectives across three tasks (translation, summarization and code generation) and two pretrained models (T5 and GPT-Neo). Our results show that fine-tuning using CDPG robustly moves these pretrained models closer towards meeting control objectives and — in contrast with baseline approaches — does not result in catastrophic forgetting.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-korbak22a, title = {Controlling Conditional Language Models without Catastrophic Forgetting}, author = {Korbak, Tomasz and Elsahar, Hady and Kruszewski, German and Dymetman, Marc}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {11499--11528}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/korbak22a/korbak22a.pdf}, url = {https://proceedings.mlr.press/v162/korbak22a.html}, abstract = {Machine learning is shifting towards general-purpose pretrained generative models, trained in a self-supervised manner on large amounts of data, which can then be applied to solve a large number of tasks. However, due to their generic training methodology, these models often fail to meet some of the downstream requirements (e.g., hallucinations in abstractive summarization or style violations in code generation). This raises the important question of how to adapt pre-trained generative models to meet all requirements without destroying their general capabilities ("catastrophic forgetting"). Recent work has proposed to solve this problem by representing task-specific requirements through energy-based models (EBMs) and approximating these EBMs using distributional policy gradients (DPG). Despite its effectiveness, this approach is however limited to unconditional distributions. In this paper, we extend DPG to conditional tasks by proposing Conditional DPG (CDPG). We evaluate CDPG on four different control objectives across three tasks (translation, summarization and code generation) and two pretrained models (T5 and GPT-Neo). Our results show that fine-tuning using CDPG robustly moves these pretrained models closer towards meeting control objectives and — in contrast with baseline approaches — does not result in catastrophic forgetting.} }
Endnote
%0 Conference Paper %T Controlling Conditional Language Models without Catastrophic Forgetting %A Tomasz Korbak %A Hady Elsahar %A German Kruszewski %A Marc Dymetman %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-korbak22a %I PMLR %P 11499--11528 %U https://proceedings.mlr.press/v162/korbak22a.html %V 162 %X Machine learning is shifting towards general-purpose pretrained generative models, trained in a self-supervised manner on large amounts of data, which can then be applied to solve a large number of tasks. However, due to their generic training methodology, these models often fail to meet some of the downstream requirements (e.g., hallucinations in abstractive summarization or style violations in code generation). This raises the important question of how to adapt pre-trained generative models to meet all requirements without destroying their general capabilities ("catastrophic forgetting"). Recent work has proposed to solve this problem by representing task-specific requirements through energy-based models (EBMs) and approximating these EBMs using distributional policy gradients (DPG). Despite its effectiveness, this approach is however limited to unconditional distributions. In this paper, we extend DPG to conditional tasks by proposing Conditional DPG (CDPG). We evaluate CDPG on four different control objectives across three tasks (translation, summarization and code generation) and two pretrained models (T5 and GPT-Neo). Our results show that fine-tuning using CDPG robustly moves these pretrained models closer towards meeting control objectives and — in contrast with baseline approaches — does not result in catastrophic forgetting.
APA
Korbak, T., Elsahar, H., Kruszewski, G. & Dymetman, M.. (2022). Controlling Conditional Language Models without Catastrophic Forgetting. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:11499-11528 Available from https://proceedings.mlr.press/v162/korbak22a.html.

Related Material