[edit]

# A Dynamical System Perspective for Lipschitz Neural Networks

*Proceedings of the 39th International Conference on Machine Learning*, PMLR 162:15484-15500, 2022.

#### Abstract

The Lipschitz constant of neural networks has been established as a key quantity to enforce the robustness to adversarial examples. In this paper, we tackle the problem of building $1$-Lipschitz Neural Networks. By studying Residual Networks from a continuous time dynamical system perspective, we provide a generic method to build $1$-Lipschitz Neural Networks and show that some previous approaches are special cases of this framework. Then, we extend this reasoning and show that ResNet flows derived from convex potentials define $1$-Lipschitz transformations, that lead us to define the

*Convex Potential Layer*(CPL). A comprehensive set of experiments on several datasets demonstrates the scalability of our architecture and the benefits as an $\ell_2$-provable defense against adversarial examples. Our code is available at \url{https://github.com/MILES-PSL/Convex-Potential-Layer}