Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism

Siqi Miao, Mia Liu, Pan Li
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:15524-15543, 2022.

Abstract

Interpretable graph learning is in need as many scientific applications depend on learning models to collect insights from graph-structured data. Previous works mostly focused on using post-hoc approaches to interpret pre-trained models (graph neural networks in particular). They argue against inherently interpretable models because the good interpretability of these models is often at the cost of their prediction accuracy. However, those post-hoc methods often fail to provide stable interpretation and may extract features that are spuriously correlated with the task. In this work, we address these issues by proposing Graph Stochastic Attention (GSAT). Derived from the information bottleneck principle, GSAT injects stochasticity to the attention weights to block the information from task-irrelevant graph components while learning stochasticity-reduced attention to select task-relevant subgraphs for interpretation. The selected subgraphs provably do not contain patterns that are spuriously correlated with the task under some assumptions. Extensive experiments on eight datasets show that GSAT outperforms the state-of-the-art methods by up to 20% in interpretation AUC and 5% in prediction accuracy. Our code is available at https://github.com/Graph-COM/GSAT.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-miao22a, title = {Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism}, author = {Miao, Siqi and Liu, Mia and Li, Pan}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {15524--15543}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/miao22a/miao22a.pdf}, url = {https://proceedings.mlr.press/v162/miao22a.html}, abstract = {Interpretable graph learning is in need as many scientific applications depend on learning models to collect insights from graph-structured data. Previous works mostly focused on using post-hoc approaches to interpret pre-trained models (graph neural networks in particular). They argue against inherently interpretable models because the good interpretability of these models is often at the cost of their prediction accuracy. However, those post-hoc methods often fail to provide stable interpretation and may extract features that are spuriously correlated with the task. In this work, we address these issues by proposing Graph Stochastic Attention (GSAT). Derived from the information bottleneck principle, GSAT injects stochasticity to the attention weights to block the information from task-irrelevant graph components while learning stochasticity-reduced attention to select task-relevant subgraphs for interpretation. The selected subgraphs provably do not contain patterns that are spuriously correlated with the task under some assumptions. Extensive experiments on eight datasets show that GSAT outperforms the state-of-the-art methods by up to 20% in interpretation AUC and 5% in prediction accuracy. Our code is available at https://github.com/Graph-COM/GSAT.} }
Endnote
%0 Conference Paper %T Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism %A Siqi Miao %A Mia Liu %A Pan Li %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-miao22a %I PMLR %P 15524--15543 %U https://proceedings.mlr.press/v162/miao22a.html %V 162 %X Interpretable graph learning is in need as many scientific applications depend on learning models to collect insights from graph-structured data. Previous works mostly focused on using post-hoc approaches to interpret pre-trained models (graph neural networks in particular). They argue against inherently interpretable models because the good interpretability of these models is often at the cost of their prediction accuracy. However, those post-hoc methods often fail to provide stable interpretation and may extract features that are spuriously correlated with the task. In this work, we address these issues by proposing Graph Stochastic Attention (GSAT). Derived from the information bottleneck principle, GSAT injects stochasticity to the attention weights to block the information from task-irrelevant graph components while learning stochasticity-reduced attention to select task-relevant subgraphs for interpretation. The selected subgraphs provably do not contain patterns that are spuriously correlated with the task under some assumptions. Extensive experiments on eight datasets show that GSAT outperforms the state-of-the-art methods by up to 20% in interpretation AUC and 5% in prediction accuracy. Our code is available at https://github.com/Graph-COM/GSAT.
APA
Miao, S., Liu, M. & Li, P.. (2022). Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:15524-15543 Available from https://proceedings.mlr.press/v162/miao22a.html.

Related Material