[edit]
Path-Aware and Structure-Preserving Generation of Synthetically Accessible Molecules
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:16952-16968, 2022.
Abstract
Computational chemistry aims to autonomously design specific molecules with target functionality. Generative frameworks provide useful tools to learn continuous representations of molecules in a latent space. While modelers could optimize chemical properties, many generated molecules are not synthesizable. To design synthetically accessible molecules that preserve main structural motifs of target molecules, we propose a reaction-embedded and structure-conditioned variational autoencoder. As the latent space jointly encodes molecular structures and their reaction routes, our new sampling method that measures the path-informed structural similarity allows us to effectively generate structurally analogous synthesizable molecules. When targeting out-of-domain as well as in-domain seed structures, our model generates structurally and property-wisely similar molecules equipped with well-defined reaction paths. By focusing on the important region in chemical space, we also demonstrate that our model can design new molecules with even higher activity than the seed molecules.