[edit]

# Efficiently Learning the Topology and Behavior of a Networked Dynamical System Via Active Queries

*Proceedings of the 39th International Conference on Machine Learning*, PMLR 162:18796-18808, 2022.

#### Abstract

Using a discrete dynamical system model, many papers have addressed the problem of learning the behavior (i.e., the local function at each node) of a networked system through active queries, assuming that the network topology is known. We address the problem of inferring both the topology of the network and the behavior of a discrete dynamical system through active queries. We consider two query models studied in the literature, namely the batch model (where all the queries must be submitted together) and the adaptive model (where responses to previous queries can be used in formulating a new query). Our results are for systems where the state of each node is from {0,1} and the local functions are Boolean. We present algorithms to learn the topology and the behavior under both batch and adaptive query models for several classes of dynamical systems. These algorithms use only a polynomial number of queries. We also present experimental results obtained by running our query generation algorithms on synthetic and real-world networks.