Provably Adversarially Robust Nearest Prototype Classifiers

Václav Voráček, Matthias Hein
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:22361-22383, 2022.

Abstract

Nearest prototype classifiers (NPCs) assign to each input point the label of the nearest prototype with respect to a chosen distance metric. A direct advantage of NPCs is that the decisions are interpretable. Previous work could provide lower bounds on the minimal adversarial perturbation in the $\ell_p$-threat model when using the same $\ell_p$-distance for the NPCs. In this paper we provide a complete discussion on the complexity when using $\ell_p$-distances for decision and $\ell_q$-threat models for certification for $p,q \in \{1,2,\infty\}$. In particular we provide scalable algorithms for the exact computation of the minimal adversarial perturbation when using $\ell_2$-distance and improved lower bounds in other cases. Using efficient improved lower bounds we train our \textbf{P}rovably adversarially robust \textbf{NPC} (PNPC), for MNIST which have better $\ell_2$-robustness guarantees than neural networks. Additionally, we show up to our knowledge the first certification results w.r.t. to the LPIPS perceptual metric which has been argued to be a more realistic threat model for image classification than $\ell_p$-balls. Our PNPC has on CIFAR10 higher certified robust accuracy than the empirical robust accuracy reported in \cite{laidlaw2021perceptual}. The code is available in our \href{https://github.com/vvoracek/Provably-Adversarially-Robust-Nearest-Prototype-Classifiers}{repository}.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-voracek22a, title = {Provably Adversarially Robust Nearest Prototype Classifiers}, author = {Vor{\'a}{\v{c}}ek, V{\'a}clav and Hein, Matthias}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {22361--22383}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/voracek22a/voracek22a.pdf}, url = {https://proceedings.mlr.press/v162/voracek22a.html}, abstract = {Nearest prototype classifiers (NPCs) assign to each input point the label of the nearest prototype with respect to a chosen distance metric. A direct advantage of NPCs is that the decisions are interpretable. Previous work could provide lower bounds on the minimal adversarial perturbation in the $\ell_p$-threat model when using the same $\ell_p$-distance for the NPCs. In this paper we provide a complete discussion on the complexity when using $\ell_p$-distances for decision and $\ell_q$-threat models for certification for $p,q \in \{1,2,\infty\}$. In particular we provide scalable algorithms for the exact computation of the minimal adversarial perturbation when using $\ell_2$-distance and improved lower bounds in other cases. Using efficient improved lower bounds we train our \textbf{P}rovably adversarially robust \textbf{NPC} (PNPC), for MNIST which have better $\ell_2$-robustness guarantees than neural networks. Additionally, we show up to our knowledge the first certification results w.r.t. to the LPIPS perceptual metric which has been argued to be a more realistic threat model for image classification than $\ell_p$-balls. Our PNPC has on CIFAR10 higher certified robust accuracy than the empirical robust accuracy reported in \cite{laidlaw2021perceptual}. The code is available in our \href{https://github.com/vvoracek/Provably-Adversarially-Robust-Nearest-Prototype-Classifiers}{repository}.} }
Endnote
%0 Conference Paper %T Provably Adversarially Robust Nearest Prototype Classifiers %A Václav Voráček %A Matthias Hein %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-voracek22a %I PMLR %P 22361--22383 %U https://proceedings.mlr.press/v162/voracek22a.html %V 162 %X Nearest prototype classifiers (NPCs) assign to each input point the label of the nearest prototype with respect to a chosen distance metric. A direct advantage of NPCs is that the decisions are interpretable. Previous work could provide lower bounds on the minimal adversarial perturbation in the $\ell_p$-threat model when using the same $\ell_p$-distance for the NPCs. In this paper we provide a complete discussion on the complexity when using $\ell_p$-distances for decision and $\ell_q$-threat models for certification for $p,q \in \{1,2,\infty\}$. In particular we provide scalable algorithms for the exact computation of the minimal adversarial perturbation when using $\ell_2$-distance and improved lower bounds in other cases. Using efficient improved lower bounds we train our \textbf{P}rovably adversarially robust \textbf{NPC} (PNPC), for MNIST which have better $\ell_2$-robustness guarantees than neural networks. Additionally, we show up to our knowledge the first certification results w.r.t. to the LPIPS perceptual metric which has been argued to be a more realistic threat model for image classification than $\ell_p$-balls. Our PNPC has on CIFAR10 higher certified robust accuracy than the empirical robust accuracy reported in \cite{laidlaw2021perceptual}. The code is available in our \href{https://github.com/vvoracek/Provably-Adversarially-Robust-Nearest-Prototype-Classifiers}{repository}.
APA
Voráček, V. & Hein, M.. (2022). Provably Adversarially Robust Nearest Prototype Classifiers. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:22361-22383 Available from https://proceedings.mlr.press/v162/voracek22a.html.

Related Material