Three-stage Evolution and Fast Equilibrium for SGD with Non-degerate Critical Points

Yi Wang, Zhiren Wang
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:23092-23113, 2022.

Abstract

We justify the fast equilibrium conjecture on stochastic gradient descent from (Li et al. 2020) under the assumptions that critical points are non-degenerate and the stochastic noise is a standard Gaussian. In this case, we prove an SGD with constant effective learning rate consists of three stages: descent, diffusion and tunneling, and explicitly identify temporary equilibrium states in the normalized parameter space that can be observed within practical training time. This interprets the gap between the mixing time in the fast equilibrium conjecture and the previously known upper bound. While our assumptions do not represent typical implementations of SGD of neural networks in practice, this is the first description of the three-stage mechanism in any case. The main finding in this mechanism is that a temporary equilibrium of local nature is quickly achieved after polynomial time (in term of the reciprocal of the intrinsic learning rate) and then stabilizes within observable time scales; and that the temporary equilibrium is in general different from the global Gibbs equilibrium, which will only appear after an exponentially long period beyond typical training limits. Our experiments support that this mechanism may extend to the general case.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-wang22ab, title = {Three-stage Evolution and Fast Equilibrium for {SGD} with Non-degerate Critical Points}, author = {Wang, Yi and Wang, Zhiren}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {23092--23113}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/wang22ab/wang22ab.pdf}, url = {https://proceedings.mlr.press/v162/wang22ab.html}, abstract = {We justify the fast equilibrium conjecture on stochastic gradient descent from (Li et al. 2020) under the assumptions that critical points are non-degenerate and the stochastic noise is a standard Gaussian. In this case, we prove an SGD with constant effective learning rate consists of three stages: descent, diffusion and tunneling, and explicitly identify temporary equilibrium states in the normalized parameter space that can be observed within practical training time. This interprets the gap between the mixing time in the fast equilibrium conjecture and the previously known upper bound. While our assumptions do not represent typical implementations of SGD of neural networks in practice, this is the first description of the three-stage mechanism in any case. The main finding in this mechanism is that a temporary equilibrium of local nature is quickly achieved after polynomial time (in term of the reciprocal of the intrinsic learning rate) and then stabilizes within observable time scales; and that the temporary equilibrium is in general different from the global Gibbs equilibrium, which will only appear after an exponentially long period beyond typical training limits. Our experiments support that this mechanism may extend to the general case.} }
Endnote
%0 Conference Paper %T Three-stage Evolution and Fast Equilibrium for SGD with Non-degerate Critical Points %A Yi Wang %A Zhiren Wang %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-wang22ab %I PMLR %P 23092--23113 %U https://proceedings.mlr.press/v162/wang22ab.html %V 162 %X We justify the fast equilibrium conjecture on stochastic gradient descent from (Li et al. 2020) under the assumptions that critical points are non-degenerate and the stochastic noise is a standard Gaussian. In this case, we prove an SGD with constant effective learning rate consists of three stages: descent, diffusion and tunneling, and explicitly identify temporary equilibrium states in the normalized parameter space that can be observed within practical training time. This interprets the gap between the mixing time in the fast equilibrium conjecture and the previously known upper bound. While our assumptions do not represent typical implementations of SGD of neural networks in practice, this is the first description of the three-stage mechanism in any case. The main finding in this mechanism is that a temporary equilibrium of local nature is quickly achieved after polynomial time (in term of the reciprocal of the intrinsic learning rate) and then stabilizes within observable time scales; and that the temporary equilibrium is in general different from the global Gibbs equilibrium, which will only appear after an exponentially long period beyond typical training limits. Our experiments support that this mechanism may extend to the general case.
APA
Wang, Y. & Wang, Z.. (2022). Three-stage Evolution and Fast Equilibrium for SGD with Non-degerate Critical Points. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:23092-23113 Available from https://proceedings.mlr.press/v162/wang22ab.html.

Related Material