Solving Stackelberg Prediction Game with Least Squares Loss via Spherically Constrained Least Squares Reformulation

Jiali Wang, Wen Huang, Rujun Jiang, Xudong Li, Alex L Wang
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:22665-22679, 2022.

Abstract

The Stackelberg prediction game (SPG) is popular in characterizing strategic interactions between a learner and an attacker. As an important special case, the SPG with least squares loss (SPG-LS) has recently received much research attention. Although initially formulated as a difficult bi-level optimization problem, SPG-LS admits tractable reformulations which can be polynomially globally solved by semidefinite programming or second order cone programming. However, all the available approaches are not well-suited for handling large-scale datasets, especially those with huge numbers of features. In this paper, we explore an alternative reformulation of the SPG-LS. By a novel nonlinear change of variables, we rewrite the SPG-LS as a spherically constrained least squares (SCLS) problem. Theoretically, we show that an $\epsilon$ optimal solutions to the SCLS (and the SPG-LS) can be achieved in $\tilde O(N/\sqrt{\epsilon})$ floating-point operations, where $N$ is the number of nonzero entries in the data matrix. Practically, we apply two well-known methods for solving this new reformulation, i.e., the Krylov subspace method and the Riemannian trust region method. Both algorithms are factorization free so that they are suitable for solving large scale problems. Numerical results on both synthetic and real-world datasets indicate that the SPG-LS, equipped with the SCLS reformulation, can be solved orders of magnitude faster than the state of the art.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-wang22g, title = {Solving Stackelberg Prediction Game with Least Squares Loss via Spherically Constrained Least Squares Reformulation}, author = {Wang, Jiali and Huang, Wen and Jiang, Rujun and Li, Xudong and Wang, Alex L}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {22665--22679}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/wang22g/wang22g.pdf}, url = {https://proceedings.mlr.press/v162/wang22g.html}, abstract = {The Stackelberg prediction game (SPG) is popular in characterizing strategic interactions between a learner and an attacker. As an important special case, the SPG with least squares loss (SPG-LS) has recently received much research attention. Although initially formulated as a difficult bi-level optimization problem, SPG-LS admits tractable reformulations which can be polynomially globally solved by semidefinite programming or second order cone programming. However, all the available approaches are not well-suited for handling large-scale datasets, especially those with huge numbers of features. In this paper, we explore an alternative reformulation of the SPG-LS. By a novel nonlinear change of variables, we rewrite the SPG-LS as a spherically constrained least squares (SCLS) problem. Theoretically, we show that an $\epsilon$ optimal solutions to the SCLS (and the SPG-LS) can be achieved in $\tilde O(N/\sqrt{\epsilon})$ floating-point operations, where $N$ is the number of nonzero entries in the data matrix. Practically, we apply two well-known methods for solving this new reformulation, i.e., the Krylov subspace method and the Riemannian trust region method. Both algorithms are factorization free so that they are suitable for solving large scale problems. Numerical results on both synthetic and real-world datasets indicate that the SPG-LS, equipped with the SCLS reformulation, can be solved orders of magnitude faster than the state of the art.} }
Endnote
%0 Conference Paper %T Solving Stackelberg Prediction Game with Least Squares Loss via Spherically Constrained Least Squares Reformulation %A Jiali Wang %A Wen Huang %A Rujun Jiang %A Xudong Li %A Alex L Wang %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-wang22g %I PMLR %P 22665--22679 %U https://proceedings.mlr.press/v162/wang22g.html %V 162 %X The Stackelberg prediction game (SPG) is popular in characterizing strategic interactions between a learner and an attacker. As an important special case, the SPG with least squares loss (SPG-LS) has recently received much research attention. Although initially formulated as a difficult bi-level optimization problem, SPG-LS admits tractable reformulations which can be polynomially globally solved by semidefinite programming or second order cone programming. However, all the available approaches are not well-suited for handling large-scale datasets, especially those with huge numbers of features. In this paper, we explore an alternative reformulation of the SPG-LS. By a novel nonlinear change of variables, we rewrite the SPG-LS as a spherically constrained least squares (SCLS) problem. Theoretically, we show that an $\epsilon$ optimal solutions to the SCLS (and the SPG-LS) can be achieved in $\tilde O(N/\sqrt{\epsilon})$ floating-point operations, where $N$ is the number of nonzero entries in the data matrix. Practically, we apply two well-known methods for solving this new reformulation, i.e., the Krylov subspace method and the Riemannian trust region method. Both algorithms are factorization free so that they are suitable for solving large scale problems. Numerical results on both synthetic and real-world datasets indicate that the SPG-LS, equipped with the SCLS reformulation, can be solved orders of magnitude faster than the state of the art.
APA
Wang, J., Huang, W., Jiang, R., Li, X. & Wang, A.L.. (2022). Solving Stackelberg Prediction Game with Least Squares Loss via Spherically Constrained Least Squares Reformulation. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:22665-22679 Available from https://proceedings.mlr.press/v162/wang22g.html.

Related Material