Improving Screening Processes via Calibrated Subset Selection

Lequn Wang, Thorsten Joachims, Manuel Gomez Rodriguez
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:22702-22726, 2022.

Abstract

Many selection processes such as finding patients qualifying for a medical trial or retrieval pipelines in search engines consist of multiple stages, where an initial screening stage focuses the resources on shortlisting the most promising candidates. In this paper, we investigate what guarantees a screening classifier can provide, independently of whether it is constructed manually or trained. We find that current solutions do not enjoy distribution-free theoretical guarantees and we show that, in general, even for a perfectly calibrated classifier, there always exist specific pools of candidates for which its shortlist is suboptimal. Then, we develop a distribution-free screening algorithm—called Calibrated Subsect Selection (CSS)—that, given any classifier and some amount of calibration data, finds near-optimal shortlists of candidates that contain a desired number of qualified candidates in expectation. Moreover, we show that a variant of CSS that calibrates a given classifier multiple times across specific groups can create shortlists with provable diversity guarantees. Experiments on US Census survey data validate our theoretical results and show that the shortlists provided by our algorithm are superior to those provided by several competitive baselines.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-wang22j, title = {Improving Screening Processes via Calibrated Subset Selection}, author = {Wang, Lequn and Joachims, Thorsten and Rodriguez, Manuel Gomez}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {22702--22726}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/wang22j/wang22j.pdf}, url = {https://proceedings.mlr.press/v162/wang22j.html}, abstract = {Many selection processes such as finding patients qualifying for a medical trial or retrieval pipelines in search engines consist of multiple stages, where an initial screening stage focuses the resources on shortlisting the most promising candidates. In this paper, we investigate what guarantees a screening classifier can provide, independently of whether it is constructed manually or trained. We find that current solutions do not enjoy distribution-free theoretical guarantees and we show that, in general, even for a perfectly calibrated classifier, there always exist specific pools of candidates for which its shortlist is suboptimal. Then, we develop a distribution-free screening algorithm—called Calibrated Subsect Selection (CSS)—that, given any classifier and some amount of calibration data, finds near-optimal shortlists of candidates that contain a desired number of qualified candidates in expectation. Moreover, we show that a variant of CSS that calibrates a given classifier multiple times across specific groups can create shortlists with provable diversity guarantees. Experiments on US Census survey data validate our theoretical results and show that the shortlists provided by our algorithm are superior to those provided by several competitive baselines.} }
Endnote
%0 Conference Paper %T Improving Screening Processes via Calibrated Subset Selection %A Lequn Wang %A Thorsten Joachims %A Manuel Gomez Rodriguez %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-wang22j %I PMLR %P 22702--22726 %U https://proceedings.mlr.press/v162/wang22j.html %V 162 %X Many selection processes such as finding patients qualifying for a medical trial or retrieval pipelines in search engines consist of multiple stages, where an initial screening stage focuses the resources on shortlisting the most promising candidates. In this paper, we investigate what guarantees a screening classifier can provide, independently of whether it is constructed manually or trained. We find that current solutions do not enjoy distribution-free theoretical guarantees and we show that, in general, even for a perfectly calibrated classifier, there always exist specific pools of candidates for which its shortlist is suboptimal. Then, we develop a distribution-free screening algorithm—called Calibrated Subsect Selection (CSS)—that, given any classifier and some amount of calibration data, finds near-optimal shortlists of candidates that contain a desired number of qualified candidates in expectation. Moreover, we show that a variant of CSS that calibrates a given classifier multiple times across specific groups can create shortlists with provable diversity guarantees. Experiments on US Census survey data validate our theoretical results and show that the shortlists provided by our algorithm are superior to those provided by several competitive baselines.
APA
Wang, L., Joachims, T. & Rodriguez, M.G.. (2022). Improving Screening Processes via Calibrated Subset Selection. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:22702-22726 Available from https://proceedings.mlr.press/v162/wang22j.html.

Related Material