Understanding Gradual Domain Adaptation: Improved Analysis, Optimal Path and Beyond

Haoxiang Wang, Bo Li, Han Zhao
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:22784-22801, 2022.

Abstract

The vast majority of existing algorithms for unsupervised domain adaptation (UDA) focus on adapting from a labeled source domain to an unlabeled target domain directly in a one-off way. Gradual domain adaptation (GDA), on the other hand, assumes a path of $(T-1)$ unlabeled intermediate domains bridging the source and target, and aims to provide better generalization in the target domain by leveraging the intermediate ones. Under certain assumptions, Kumar et al. (2020) proposed a simple algorithm, Gradual Self-Training, along with a generalization bound in the order of $e^{O(T)} \left(\varepsilon_0+O\left(\sqrt{log(T)/n}\right)\right)$ for the target domain error, where $\varepsilon_0$ is the source domain error and $n$ is the data size of each domain. Due to the exponential factor, this upper bound becomes vacuous when $T$ is only moderately large. In this work, we analyze gradual self-training under more general and relaxed assumptions, and prove a significantly improved generalization bound as $\widetilde{O}\left(\varepsilon_0 + T\Delta + T/\sqrt{n} + 1/\sqrt{nT}\right)$, where $\Delta$ is the average distributional distance between consecutive domains. Compared with the existing bound with an exponential dependency on $T$ as a multiplicative factor, our bound only depends on $T$ linearly and additively. Perhaps more interestingly, our result implies the existence of an optimal choice of $T$ that minimizes the generalization error, and it also naturally suggests an optimal way to construct the path of intermediate domains so as to minimize the accumulative path length $T\Delta$ between the source and target. To corroborate the implications of our theory, we examine gradual self-training on multiple semi-synthetic and real datasets, which confirms our findings. We believe our insights provide a path forward toward the design of future GDA algorithms.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-wang22n, title = {Understanding Gradual Domain Adaptation: Improved Analysis, Optimal Path and Beyond}, author = {Wang, Haoxiang and Li, Bo and Zhao, Han}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {22784--22801}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/wang22n/wang22n.pdf}, url = {https://proceedings.mlr.press/v162/wang22n.html}, abstract = {The vast majority of existing algorithms for unsupervised domain adaptation (UDA) focus on adapting from a labeled source domain to an unlabeled target domain directly in a one-off way. Gradual domain adaptation (GDA), on the other hand, assumes a path of $(T-1)$ unlabeled intermediate domains bridging the source and target, and aims to provide better generalization in the target domain by leveraging the intermediate ones. Under certain assumptions, Kumar et al. (2020) proposed a simple algorithm, Gradual Self-Training, along with a generalization bound in the order of $e^{O(T)} \left(\varepsilon_0+O\left(\sqrt{log(T)/n}\right)\right)$ for the target domain error, where $\varepsilon_0$ is the source domain error and $n$ is the data size of each domain. Due to the exponential factor, this upper bound becomes vacuous when $T$ is only moderately large. In this work, we analyze gradual self-training under more general and relaxed assumptions, and prove a significantly improved generalization bound as $\widetilde{O}\left(\varepsilon_0 + T\Delta + T/\sqrt{n} + 1/\sqrt{nT}\right)$, where $\Delta$ is the average distributional distance between consecutive domains. Compared with the existing bound with an exponential dependency on $T$ as a multiplicative factor, our bound only depends on $T$ linearly and additively. Perhaps more interestingly, our result implies the existence of an optimal choice of $T$ that minimizes the generalization error, and it also naturally suggests an optimal way to construct the path of intermediate domains so as to minimize the accumulative path length $T\Delta$ between the source and target. To corroborate the implications of our theory, we examine gradual self-training on multiple semi-synthetic and real datasets, which confirms our findings. We believe our insights provide a path forward toward the design of future GDA algorithms.} }
Endnote
%0 Conference Paper %T Understanding Gradual Domain Adaptation: Improved Analysis, Optimal Path and Beyond %A Haoxiang Wang %A Bo Li %A Han Zhao %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-wang22n %I PMLR %P 22784--22801 %U https://proceedings.mlr.press/v162/wang22n.html %V 162 %X The vast majority of existing algorithms for unsupervised domain adaptation (UDA) focus on adapting from a labeled source domain to an unlabeled target domain directly in a one-off way. Gradual domain adaptation (GDA), on the other hand, assumes a path of $(T-1)$ unlabeled intermediate domains bridging the source and target, and aims to provide better generalization in the target domain by leveraging the intermediate ones. Under certain assumptions, Kumar et al. (2020) proposed a simple algorithm, Gradual Self-Training, along with a generalization bound in the order of $e^{O(T)} \left(\varepsilon_0+O\left(\sqrt{log(T)/n}\right)\right)$ for the target domain error, where $\varepsilon_0$ is the source domain error and $n$ is the data size of each domain. Due to the exponential factor, this upper bound becomes vacuous when $T$ is only moderately large. In this work, we analyze gradual self-training under more general and relaxed assumptions, and prove a significantly improved generalization bound as $\widetilde{O}\left(\varepsilon_0 + T\Delta + T/\sqrt{n} + 1/\sqrt{nT}\right)$, where $\Delta$ is the average distributional distance between consecutive domains. Compared with the existing bound with an exponential dependency on $T$ as a multiplicative factor, our bound only depends on $T$ linearly and additively. Perhaps more interestingly, our result implies the existence of an optimal choice of $T$ that minimizes the generalization error, and it also naturally suggests an optimal way to construct the path of intermediate domains so as to minimize the accumulative path length $T\Delta$ between the source and target. To corroborate the implications of our theory, we examine gradual self-training on multiple semi-synthetic and real datasets, which confirms our findings. We believe our insights provide a path forward toward the design of future GDA algorithms.
APA
Wang, H., Li, B. & Zhao, H.. (2022). Understanding Gradual Domain Adaptation: Improved Analysis, Optimal Path and Beyond. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:22784-22801 Available from https://proceedings.mlr.press/v162/wang22n.html.

Related Material