NP-Match: When Neural Processes meet Semi-Supervised Learning

Jianfeng Wang, Thomas Lukasiewicz, Daniela Massiceti, Xiaolin Hu, Vladimir Pavlovic, Alexandros Neophytou
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:22919-22934, 2022.

Abstract

Semi-supervised learning (SSL) has been widely explored in recent years, and it is an effective way of leveraging unlabeled data to reduce the reliance on labeled data. In this work, we adjust neural processes (NPs) to the semi-supervised image classification task, resulting in a new method named NP-Match. NP-Match is suited to this task for two reasons. Firstly, NP-Match implicitly compares data points when making predictions, and as a result, the prediction of each unlabeled data point is affected by the labeled data points that are similar to it, which improves the quality of pseudolabels. Secondly, NP-Match is able to estimate uncertainty that can be used as a tool for selecting unlabeled samples with reliable pseudo-labels. Compared with uncertainty-based SSL methods implemented with Monte Carlo (MC) dropout, NP-Match estimates uncertainty with much less computational overhead, which can save time at both the training and the testing phases. We conducted extensive experiments on four public datasets, and NP-Match outperforms state-of-theart (SOTA) results or achieves competitive results on them, which shows the effectiveness of NPMatch and its potential for SSL.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-wang22s, title = {{NP}-Match: When Neural Processes meet Semi-Supervised Learning}, author = {Wang, Jianfeng and Lukasiewicz, Thomas and Massiceti, Daniela and Hu, Xiaolin and Pavlovic, Vladimir and Neophytou, Alexandros}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {22919--22934}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/wang22s/wang22s.pdf}, url = {https://proceedings.mlr.press/v162/wang22s.html}, abstract = {Semi-supervised learning (SSL) has been widely explored in recent years, and it is an effective way of leveraging unlabeled data to reduce the reliance on labeled data. In this work, we adjust neural processes (NPs) to the semi-supervised image classification task, resulting in a new method named NP-Match. NP-Match is suited to this task for two reasons. Firstly, NP-Match implicitly compares data points when making predictions, and as a result, the prediction of each unlabeled data point is affected by the labeled data points that are similar to it, which improves the quality of pseudolabels. Secondly, NP-Match is able to estimate uncertainty that can be used as a tool for selecting unlabeled samples with reliable pseudo-labels. Compared with uncertainty-based SSL methods implemented with Monte Carlo (MC) dropout, NP-Match estimates uncertainty with much less computational overhead, which can save time at both the training and the testing phases. We conducted extensive experiments on four public datasets, and NP-Match outperforms state-of-theart (SOTA) results or achieves competitive results on them, which shows the effectiveness of NPMatch and its potential for SSL.} }
Endnote
%0 Conference Paper %T NP-Match: When Neural Processes meet Semi-Supervised Learning %A Jianfeng Wang %A Thomas Lukasiewicz %A Daniela Massiceti %A Xiaolin Hu %A Vladimir Pavlovic %A Alexandros Neophytou %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-wang22s %I PMLR %P 22919--22934 %U https://proceedings.mlr.press/v162/wang22s.html %V 162 %X Semi-supervised learning (SSL) has been widely explored in recent years, and it is an effective way of leveraging unlabeled data to reduce the reliance on labeled data. In this work, we adjust neural processes (NPs) to the semi-supervised image classification task, resulting in a new method named NP-Match. NP-Match is suited to this task for two reasons. Firstly, NP-Match implicitly compares data points when making predictions, and as a result, the prediction of each unlabeled data point is affected by the labeled data points that are similar to it, which improves the quality of pseudolabels. Secondly, NP-Match is able to estimate uncertainty that can be used as a tool for selecting unlabeled samples with reliable pseudo-labels. Compared with uncertainty-based SSL methods implemented with Monte Carlo (MC) dropout, NP-Match estimates uncertainty with much less computational overhead, which can save time at both the training and the testing phases. We conducted extensive experiments on four public datasets, and NP-Match outperforms state-of-theart (SOTA) results or achieves competitive results on them, which shows the effectiveness of NPMatch and its potential for SSL.
APA
Wang, J., Lukasiewicz, T., Massiceti, D., Hu, X., Pavlovic, V. & Neophytou, A.. (2022). NP-Match: When Neural Processes meet Semi-Supervised Learning. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:22919-22934 Available from https://proceedings.mlr.press/v162/wang22s.html.

Related Material