COLA: Consistent Learning with Opponent-Learning Awareness

Timon Willi, Alistair Hp Letcher, Johannes Treutlein, Jakob Foerster
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:23804-23831, 2022.

Abstract

Learning in general-sum games is unstable and frequently leads to socially undesirable (Pareto-dominated) outcomes. To mitigate this, Learning with Opponent-Learning Awareness (LOLA) introduced opponent shaping to this setting, by accounting for each agent’s influence on their opponents’ anticipated learning steps. However, the original LOLA formulation (and follow-up work) is inconsistent because LOLA models other agents as naive learners rather than LOLA agents. In previous work, this inconsistency was suggested as a cause of LOLA’s failure to preserve stable fixed points (SFPs). First, we formalize consistency and show that higher-order LOLA (HOLA) solves LOLA’s inconsistency problem if it converges. Second, we correct a claim made in the literature by Sch{ä}fer and Anandkumar (2019), proving that Competitive Gradient Descent (CGD) does not recover HOLA as a series expansion (and fails to solve the consistency problem). Third, we propose a new method called Consistent LOLA (COLA), which learns update functions that are consistent under mutual opponent shaping. It requires no more than second-order derivatives and learns consistent update functions even when HOLA fails to converge. However, we also prove that even consistent update functions do not preserve SFPs, contradicting the hypothesis that this shortcoming is caused by LOLA’s inconsistency. Finally, in an empirical evaluation on a set of general-sum games, we find that COLA finds prosocial solutions and that it converges under a wider range of learning rates than HOLA and LOLA. We support the latter finding with a theoretical result for a simple game.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-willi22a, title = {{COLA}: Consistent Learning with Opponent-Learning Awareness}, author = {Willi, Timon and Letcher, Alistair Hp and Treutlein, Johannes and Foerster, Jakob}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {23804--23831}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/willi22a/willi22a.pdf}, url = {https://proceedings.mlr.press/v162/willi22a.html}, abstract = {Learning in general-sum games is unstable and frequently leads to socially undesirable (Pareto-dominated) outcomes. To mitigate this, Learning with Opponent-Learning Awareness (LOLA) introduced opponent shaping to this setting, by accounting for each agent’s influence on their opponents’ anticipated learning steps. However, the original LOLA formulation (and follow-up work) is inconsistent because LOLA models other agents as naive learners rather than LOLA agents. In previous work, this inconsistency was suggested as a cause of LOLA’s failure to preserve stable fixed points (SFPs). First, we formalize consistency and show that higher-order LOLA (HOLA) solves LOLA’s inconsistency problem if it converges. Second, we correct a claim made in the literature by Sch{ä}fer and Anandkumar (2019), proving that Competitive Gradient Descent (CGD) does not recover HOLA as a series expansion (and fails to solve the consistency problem). Third, we propose a new method called Consistent LOLA (COLA), which learns update functions that are consistent under mutual opponent shaping. It requires no more than second-order derivatives and learns consistent update functions even when HOLA fails to converge. However, we also prove that even consistent update functions do not preserve SFPs, contradicting the hypothesis that this shortcoming is caused by LOLA’s inconsistency. Finally, in an empirical evaluation on a set of general-sum games, we find that COLA finds prosocial solutions and that it converges under a wider range of learning rates than HOLA and LOLA. We support the latter finding with a theoretical result for a simple game.} }
Endnote
%0 Conference Paper %T COLA: Consistent Learning with Opponent-Learning Awareness %A Timon Willi %A Alistair Hp Letcher %A Johannes Treutlein %A Jakob Foerster %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-willi22a %I PMLR %P 23804--23831 %U https://proceedings.mlr.press/v162/willi22a.html %V 162 %X Learning in general-sum games is unstable and frequently leads to socially undesirable (Pareto-dominated) outcomes. To mitigate this, Learning with Opponent-Learning Awareness (LOLA) introduced opponent shaping to this setting, by accounting for each agent’s influence on their opponents’ anticipated learning steps. However, the original LOLA formulation (and follow-up work) is inconsistent because LOLA models other agents as naive learners rather than LOLA agents. In previous work, this inconsistency was suggested as a cause of LOLA’s failure to preserve stable fixed points (SFPs). First, we formalize consistency and show that higher-order LOLA (HOLA) solves LOLA’s inconsistency problem if it converges. Second, we correct a claim made in the literature by Sch{ä}fer and Anandkumar (2019), proving that Competitive Gradient Descent (CGD) does not recover HOLA as a series expansion (and fails to solve the consistency problem). Third, we propose a new method called Consistent LOLA (COLA), which learns update functions that are consistent under mutual opponent shaping. It requires no more than second-order derivatives and learns consistent update functions even when HOLA fails to converge. However, we also prove that even consistent update functions do not preserve SFPs, contradicting the hypothesis that this shortcoming is caused by LOLA’s inconsistency. Finally, in an empirical evaluation on a set of general-sum games, we find that COLA finds prosocial solutions and that it converges under a wider range of learning rates than HOLA and LOLA. We support the latter finding with a theoretical result for a simple game.
APA
Willi, T., Letcher, A.H., Treutlein, J. & Foerster, J.. (2022). COLA: Consistent Learning with Opponent-Learning Awareness. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:23804-23831 Available from https://proceedings.mlr.press/v162/willi22a.html.

Related Material