RetrievalGuard: Provably Robust 1-Nearest Neighbor Image Retrieval

Yihan Wu, Hongyang Zhang, Heng Huang
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:24266-24279, 2022.

Abstract

Recent research works have shown that image retrieval models are vulnerable to adversarial attacks, where slightly modified test inputs could lead to problematic retrieval results. In this paper, we aim to design a provably robust image retrieval model which keeps the most important evaluation metric Recall@1 invariant to adversarial perturbation. We propose the first 1-nearest neighbor (NN) image retrieval algorithm, RetrievalGuard, which is provably robust against adversarial perturbations within an $\ell_2$ ball of calculable radius. The challenge is to design a provably robust algorithm that takes into consideration the 1-NN search and the high-dimensional nature of the embedding space. Algorithmically, given a base retrieval model and a query sample, we build a smoothed retrieval model by carefully analyzing the 1-NN search procedure in the high-dimensional embedding space. We show that the smoothed retrieval model has bounded Lipschitz constant and thus the retrieval score is invariant to $\ell_2$ adversarial perturbations. Experiments on on image retrieval tasks validate the robustness of our RetrievalGuard method.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-wu22o, title = {{R}etrieval{G}uard: Provably Robust 1-Nearest Neighbor Image Retrieval}, author = {Wu, Yihan and Zhang, Hongyang and Huang, Heng}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {24266--24279}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/wu22o/wu22o.pdf}, url = {https://proceedings.mlr.press/v162/wu22o.html}, abstract = {Recent research works have shown that image retrieval models are vulnerable to adversarial attacks, where slightly modified test inputs could lead to problematic retrieval results. In this paper, we aim to design a provably robust image retrieval model which keeps the most important evaluation metric Recall@1 invariant to adversarial perturbation. We propose the first 1-nearest neighbor (NN) image retrieval algorithm, RetrievalGuard, which is provably robust against adversarial perturbations within an $\ell_2$ ball of calculable radius. The challenge is to design a provably robust algorithm that takes into consideration the 1-NN search and the high-dimensional nature of the embedding space. Algorithmically, given a base retrieval model and a query sample, we build a smoothed retrieval model by carefully analyzing the 1-NN search procedure in the high-dimensional embedding space. We show that the smoothed retrieval model has bounded Lipschitz constant and thus the retrieval score is invariant to $\ell_2$ adversarial perturbations. Experiments on on image retrieval tasks validate the robustness of our RetrievalGuard method.} }
Endnote
%0 Conference Paper %T RetrievalGuard: Provably Robust 1-Nearest Neighbor Image Retrieval %A Yihan Wu %A Hongyang Zhang %A Heng Huang %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-wu22o %I PMLR %P 24266--24279 %U https://proceedings.mlr.press/v162/wu22o.html %V 162 %X Recent research works have shown that image retrieval models are vulnerable to adversarial attacks, where slightly modified test inputs could lead to problematic retrieval results. In this paper, we aim to design a provably robust image retrieval model which keeps the most important evaluation metric Recall@1 invariant to adversarial perturbation. We propose the first 1-nearest neighbor (NN) image retrieval algorithm, RetrievalGuard, which is provably robust against adversarial perturbations within an $\ell_2$ ball of calculable radius. The challenge is to design a provably robust algorithm that takes into consideration the 1-NN search and the high-dimensional nature of the embedding space. Algorithmically, given a base retrieval model and a query sample, we build a smoothed retrieval model by carefully analyzing the 1-NN search procedure in the high-dimensional embedding space. We show that the smoothed retrieval model has bounded Lipschitz constant and thus the retrieval score is invariant to $\ell_2$ adversarial perturbations. Experiments on on image retrieval tasks validate the robustness of our RetrievalGuard method.
APA
Wu, Y., Zhang, H. & Huang, H.. (2022). RetrievalGuard: Provably Robust 1-Nearest Neighbor Image Retrieval. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:24266-24279 Available from https://proceedings.mlr.press/v162/wu22o.html.

Related Material