Omni-Granular Ego-Semantic Propagation for Self-Supervised Graph Representation Learning

Ling Yang, Shenda Hong
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:25022-25037, 2022.

Abstract

Unsupervised/self-supervised graph representation learning is critical for downstream node- and graph-level classification tasks. Global structure of graphs helps discriminating representations and existing methods mainly utilize the global structure by imposing additional supervisions. However, their global semantics are usually invariant for all nodes/graphs and they fail to explicitly embed the global semantics to enrich the representations. In this paper, we propose Omni-Granular Ego-Semantic Propagation for Self-Supervised Graph Representation Learning (OEPG). Specifically, we introduce instance-adaptive global-aware ego-semantic descriptors, leveraging the first- and second-order feature differences between each node/graph and hierarchical global clusters of the entire graph dataset. The descriptors can be explicitly integrated into local graph convolution as new neighbor nodes. Besides, we design an omni-granular normalization on the whole scales and hierarchies of the ego-semantic to assign attentional weight to each descriptor from an omni-granular perspective. Specialized pretext tasks and cross-iteration momentum update are further developed for local-global mutual adaptation. In downstream tasks, OEPG consistently achieves the best performance with a 2%~6% accuracy gain on multiple datasets cross scales and domains. Notably, OEPG also generalizes to quantity- and topology-imbalance scenarios.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-yang22d, title = {Omni-Granular Ego-Semantic Propagation for Self-Supervised Graph Representation Learning}, author = {Yang, Ling and Hong, Shenda}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {25022--25037}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/yang22d/yang22d.pdf}, url = {https://proceedings.mlr.press/v162/yang22d.html}, abstract = {Unsupervised/self-supervised graph representation learning is critical for downstream node- and graph-level classification tasks. Global structure of graphs helps discriminating representations and existing methods mainly utilize the global structure by imposing additional supervisions. However, their global semantics are usually invariant for all nodes/graphs and they fail to explicitly embed the global semantics to enrich the representations. In this paper, we propose Omni-Granular Ego-Semantic Propagation for Self-Supervised Graph Representation Learning (OEPG). Specifically, we introduce instance-adaptive global-aware ego-semantic descriptors, leveraging the first- and second-order feature differences between each node/graph and hierarchical global clusters of the entire graph dataset. The descriptors can be explicitly integrated into local graph convolution as new neighbor nodes. Besides, we design an omni-granular normalization on the whole scales and hierarchies of the ego-semantic to assign attentional weight to each descriptor from an omni-granular perspective. Specialized pretext tasks and cross-iteration momentum update are further developed for local-global mutual adaptation. In downstream tasks, OEPG consistently achieves the best performance with a 2%~6% accuracy gain on multiple datasets cross scales and domains. Notably, OEPG also generalizes to quantity- and topology-imbalance scenarios.} }
Endnote
%0 Conference Paper %T Omni-Granular Ego-Semantic Propagation for Self-Supervised Graph Representation Learning %A Ling Yang %A Shenda Hong %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-yang22d %I PMLR %P 25022--25037 %U https://proceedings.mlr.press/v162/yang22d.html %V 162 %X Unsupervised/self-supervised graph representation learning is critical for downstream node- and graph-level classification tasks. Global structure of graphs helps discriminating representations and existing methods mainly utilize the global structure by imposing additional supervisions. However, their global semantics are usually invariant for all nodes/graphs and they fail to explicitly embed the global semantics to enrich the representations. In this paper, we propose Omni-Granular Ego-Semantic Propagation for Self-Supervised Graph Representation Learning (OEPG). Specifically, we introduce instance-adaptive global-aware ego-semantic descriptors, leveraging the first- and second-order feature differences between each node/graph and hierarchical global clusters of the entire graph dataset. The descriptors can be explicitly integrated into local graph convolution as new neighbor nodes. Besides, we design an omni-granular normalization on the whole scales and hierarchies of the ego-semantic to assign attentional weight to each descriptor from an omni-granular perspective. Specialized pretext tasks and cross-iteration momentum update are further developed for local-global mutual adaptation. In downstream tasks, OEPG consistently achieves the best performance with a 2%~6% accuracy gain on multiple datasets cross scales and domains. Notably, OEPG also generalizes to quantity- and topology-imbalance scenarios.
APA
Yang, L. & Hong, S.. (2022). Omni-Granular Ego-Semantic Propagation for Self-Supervised Graph Representation Learning. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:25022-25037 Available from https://proceedings.mlr.press/v162/yang22d.html.

Related Material