Fourier Learning with Cyclical Data

Yingxiang Yang, Zhihan Xiong, Tianyi Liu, Taiqing Wang, Chong Wang
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:25280-25301, 2022.

Abstract

Many machine learning models for online applications, such as recommender systems, are often trained on data with cyclical properties. These data sequentially arrive from a time-varying distribution that is periodic in time. Existing algorithms either use streaming learning to track a time-varying set of optimal model parameters, yielding a dynamic regret that scales linearly in time; or partition the data of each cycle into multiple segments and train a separate model for each—a pluralistic approach that is computationally and storage-wise expensive. In this paper, we have designed a novel approach to overcome the aforementioned shortcomings. Our method, named "Fourier learning", encodes the periodicity into the model representation using a partial Fourier sequence, and trains the coefficient functions modeled by neural networks. Particularly, we design a Fourier multi-layer perceptron (F-MLP) that can be trained on streaming data with stochastic gradient descent (streaming-SGD), and we derive its convergence guarantees. We demonstrate Fourier learning’s better performance with extensive experiments on synthetic and public datasets, as well as on a large-scale recommender system that is updated in real-time, and trained with tens of millions of samples per day.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-yang22o, title = {{F}ourier Learning with Cyclical Data}, author = {Yang, Yingxiang and Xiong, Zhihan and Liu, Tianyi and Wang, Taiqing and Wang, Chong}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {25280--25301}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/yang22o/yang22o.pdf}, url = {https://proceedings.mlr.press/v162/yang22o.html}, abstract = {Many machine learning models for online applications, such as recommender systems, are often trained on data with cyclical properties. These data sequentially arrive from a time-varying distribution that is periodic in time. Existing algorithms either use streaming learning to track a time-varying set of optimal model parameters, yielding a dynamic regret that scales linearly in time; or partition the data of each cycle into multiple segments and train a separate model for each—a pluralistic approach that is computationally and storage-wise expensive. In this paper, we have designed a novel approach to overcome the aforementioned shortcomings. Our method, named "Fourier learning", encodes the periodicity into the model representation using a partial Fourier sequence, and trains the coefficient functions modeled by neural networks. Particularly, we design a Fourier multi-layer perceptron (F-MLP) that can be trained on streaming data with stochastic gradient descent (streaming-SGD), and we derive its convergence guarantees. We demonstrate Fourier learning’s better performance with extensive experiments on synthetic and public datasets, as well as on a large-scale recommender system that is updated in real-time, and trained with tens of millions of samples per day.} }
Endnote
%0 Conference Paper %T Fourier Learning with Cyclical Data %A Yingxiang Yang %A Zhihan Xiong %A Tianyi Liu %A Taiqing Wang %A Chong Wang %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-yang22o %I PMLR %P 25280--25301 %U https://proceedings.mlr.press/v162/yang22o.html %V 162 %X Many machine learning models for online applications, such as recommender systems, are often trained on data with cyclical properties. These data sequentially arrive from a time-varying distribution that is periodic in time. Existing algorithms either use streaming learning to track a time-varying set of optimal model parameters, yielding a dynamic regret that scales linearly in time; or partition the data of each cycle into multiple segments and train a separate model for each—a pluralistic approach that is computationally and storage-wise expensive. In this paper, we have designed a novel approach to overcome the aforementioned shortcomings. Our method, named "Fourier learning", encodes the periodicity into the model representation using a partial Fourier sequence, and trains the coefficient functions modeled by neural networks. Particularly, we design a Fourier multi-layer perceptron (F-MLP) that can be trained on streaming data with stochastic gradient descent (streaming-SGD), and we derive its convergence guarantees. We demonstrate Fourier learning’s better performance with extensive experiments on synthetic and public datasets, as well as on a large-scale recommender system that is updated in real-time, and trained with tens of millions of samples per day.
APA
Yang, Y., Xiong, Z., Liu, T., Wang, T. & Wang, C.. (2022). Fourier Learning with Cyclical Data. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:25280-25301 Available from https://proceedings.mlr.press/v162/yang22o.html.

Related Material