Revisiting and Advancing Fast Adversarial Training Through The Lens of Bi-Level Optimization

Yihua Zhang, Guanhua Zhang, Prashant Khanduri, Mingyi Hong, Shiyu Chang, Sijia Liu
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:26693-26712, 2022.

Abstract

Adversarial training (AT) is a widely recognized defense mechanism to gain the robustness of deep neural networks against adversarial attacks. It is built on min-max optimization (MMO), where the minimizer (i.e., defender) seeks a robust model to minimize the worst-case training loss in the presence of adversarial examples crafted by the maximizer (i.e., attacker). However, the conventional MMO method makes AT hard to scale. Thus, Fast-AT and other recent algorithms attempt to simplify MMO by replacing its maximization step with the single gradient sign-based attack generation step. Although easy to implement, FAST-AT lacks theoretical guarantees, and its empirical performance is unsatisfactory due to the issue of robust catastrophic overfitting when training with strong adversaries. In this paper, we advance Fast-AT from the fresh perspective of bi-level optimization (BLO). We first show that the commonly-used Fast-AT is equivalent to using a stochastic gradient algorithm to solve a linearized BLO problem involving a sign operation. However, the discrete nature of the sign operation makes it difficult to understand the algorithm performance. Inspired by BLO, we design and analyze a new set of robust training algorithms termed Fast Bi-level AT (Fast-BAT), which effectively defends sign-based projected gradient descent (PGD) attacks without using any gradient sign method or explicit robust regularization. In practice, we show that our method yields substantial robustness improvements over multiple baselines across multiple models and datasets.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-zhang22ak, title = {Revisiting and Advancing Fast Adversarial Training Through The Lens of Bi-Level Optimization}, author = {Zhang, Yihua and Zhang, Guanhua and Khanduri, Prashant and Hong, Mingyi and Chang, Shiyu and Liu, Sijia}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {26693--26712}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/zhang22ak/zhang22ak.pdf}, url = {https://proceedings.mlr.press/v162/zhang22ak.html}, abstract = {Adversarial training (AT) is a widely recognized defense mechanism to gain the robustness of deep neural networks against adversarial attacks. It is built on min-max optimization (MMO), where the minimizer (i.e., defender) seeks a robust model to minimize the worst-case training loss in the presence of adversarial examples crafted by the maximizer (i.e., attacker). However, the conventional MMO method makes AT hard to scale. Thus, Fast-AT and other recent algorithms attempt to simplify MMO by replacing its maximization step with the single gradient sign-based attack generation step. Although easy to implement, FAST-AT lacks theoretical guarantees, and its empirical performance is unsatisfactory due to the issue of robust catastrophic overfitting when training with strong adversaries. In this paper, we advance Fast-AT from the fresh perspective of bi-level optimization (BLO). We first show that the commonly-used Fast-AT is equivalent to using a stochastic gradient algorithm to solve a linearized BLO problem involving a sign operation. However, the discrete nature of the sign operation makes it difficult to understand the algorithm performance. Inspired by BLO, we design and analyze a new set of robust training algorithms termed Fast Bi-level AT (Fast-BAT), which effectively defends sign-based projected gradient descent (PGD) attacks without using any gradient sign method or explicit robust regularization. In practice, we show that our method yields substantial robustness improvements over multiple baselines across multiple models and datasets.} }
Endnote
%0 Conference Paper %T Revisiting and Advancing Fast Adversarial Training Through The Lens of Bi-Level Optimization %A Yihua Zhang %A Guanhua Zhang %A Prashant Khanduri %A Mingyi Hong %A Shiyu Chang %A Sijia Liu %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-zhang22ak %I PMLR %P 26693--26712 %U https://proceedings.mlr.press/v162/zhang22ak.html %V 162 %X Adversarial training (AT) is a widely recognized defense mechanism to gain the robustness of deep neural networks against adversarial attacks. It is built on min-max optimization (MMO), where the minimizer (i.e., defender) seeks a robust model to minimize the worst-case training loss in the presence of adversarial examples crafted by the maximizer (i.e., attacker). However, the conventional MMO method makes AT hard to scale. Thus, Fast-AT and other recent algorithms attempt to simplify MMO by replacing its maximization step with the single gradient sign-based attack generation step. Although easy to implement, FAST-AT lacks theoretical guarantees, and its empirical performance is unsatisfactory due to the issue of robust catastrophic overfitting when training with strong adversaries. In this paper, we advance Fast-AT from the fresh perspective of bi-level optimization (BLO). We first show that the commonly-used Fast-AT is equivalent to using a stochastic gradient algorithm to solve a linearized BLO problem involving a sign operation. However, the discrete nature of the sign operation makes it difficult to understand the algorithm performance. Inspired by BLO, we design and analyze a new set of robust training algorithms termed Fast Bi-level AT (Fast-BAT), which effectively defends sign-based projected gradient descent (PGD) attacks without using any gradient sign method or explicit robust regularization. In practice, we show that our method yields substantial robustness improvements over multiple baselines across multiple models and datasets.
APA
Zhang, Y., Zhang, G., Khanduri, P., Hong, M., Chang, S. & Liu, S.. (2022). Revisiting and Advancing Fast Adversarial Training Through The Lens of Bi-Level Optimization. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:26693-26712 Available from https://proceedings.mlr.press/v162/zhang22ak.html.

Related Material