Sparse Invariant Risk Minimization

Xiao Zhou, Yong Lin, Weizhong Zhang, Tong Zhang
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:27222-27244, 2022.

Abstract

Invariant Risk Minimization (IRM) is an emerging invariant feature extracting technique to help generalization with distributional shift. However, we find that there exists a basic and intractable contradiction between the model trainability and generalization ability in IRM. On one hand, recent studies on deep learning theory indicate the importance of large-sized or even overparameterized neural networks to make the model easy to train. On the other hand, unlike empirical risk minimization that can be benefited from overparameterization, our empirical and theoretical analyses show that the generalization ability of IRM is much easier to be demolished by overfitting caused by overparameterization. In this paper, we propose a simple yet effective paradigm named Sparse Invariant Risk Minimization (SparseIRM) to address this contradiction. Our key idea is to employ a global sparsity constraint as a defense to prevent spurious features from leaking in during the whole IRM process. Compared with sparisfy-after-training prototype by prior work which can discard invariant features, the global sparsity constraint limits the budget for feature selection and enforces SparseIRM to select the invariant features. We illustrate the benefit of SparseIRM through a theoretical analysis on a simple linear case. Empirically we demonstrate the power of SparseIRM through various datasets and models and surpass state-of-the-art methods with a gap up to 29%.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-zhou22e, title = {Sparse Invariant Risk Minimization}, author = {Zhou, Xiao and Lin, Yong and Zhang, Weizhong and Zhang, Tong}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {27222--27244}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/zhou22e/zhou22e.pdf}, url = {https://proceedings.mlr.press/v162/zhou22e.html}, abstract = {Invariant Risk Minimization (IRM) is an emerging invariant feature extracting technique to help generalization with distributional shift. However, we find that there exists a basic and intractable contradiction between the model trainability and generalization ability in IRM. On one hand, recent studies on deep learning theory indicate the importance of large-sized or even overparameterized neural networks to make the model easy to train. On the other hand, unlike empirical risk minimization that can be benefited from overparameterization, our empirical and theoretical analyses show that the generalization ability of IRM is much easier to be demolished by overfitting caused by overparameterization. In this paper, we propose a simple yet effective paradigm named Sparse Invariant Risk Minimization (SparseIRM) to address this contradiction. Our key idea is to employ a global sparsity constraint as a defense to prevent spurious features from leaking in during the whole IRM process. Compared with sparisfy-after-training prototype by prior work which can discard invariant features, the global sparsity constraint limits the budget for feature selection and enforces SparseIRM to select the invariant features. We illustrate the benefit of SparseIRM through a theoretical analysis on a simple linear case. Empirically we demonstrate the power of SparseIRM through various datasets and models and surpass state-of-the-art methods with a gap up to 29%.} }
Endnote
%0 Conference Paper %T Sparse Invariant Risk Minimization %A Xiao Zhou %A Yong Lin %A Weizhong Zhang %A Tong Zhang %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-zhou22e %I PMLR %P 27222--27244 %U https://proceedings.mlr.press/v162/zhou22e.html %V 162 %X Invariant Risk Minimization (IRM) is an emerging invariant feature extracting technique to help generalization with distributional shift. However, we find that there exists a basic and intractable contradiction between the model trainability and generalization ability in IRM. On one hand, recent studies on deep learning theory indicate the importance of large-sized or even overparameterized neural networks to make the model easy to train. On the other hand, unlike empirical risk minimization that can be benefited from overparameterization, our empirical and theoretical analyses show that the generalization ability of IRM is much easier to be demolished by overfitting caused by overparameterization. In this paper, we propose a simple yet effective paradigm named Sparse Invariant Risk Minimization (SparseIRM) to address this contradiction. Our key idea is to employ a global sparsity constraint as a defense to prevent spurious features from leaking in during the whole IRM process. Compared with sparisfy-after-training prototype by prior work which can discard invariant features, the global sparsity constraint limits the budget for feature selection and enforces SparseIRM to select the invariant features. We illustrate the benefit of SparseIRM through a theoretical analysis on a simple linear case. Empirically we demonstrate the power of SparseIRM through various datasets and models and surpass state-of-the-art methods with a gap up to 29%.
APA
Zhou, X., Lin, Y., Zhang, W. & Zhang, T.. (2022). Sparse Invariant Risk Minimization. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:27222-27244 Available from https://proceedings.mlr.press/v162/zhou22e.html.

Related Material