Contrastive Learning with Boosted Memorization

Zhihan Zhou, Jiangchao Yao, Yan-Feng Wang, Bo Han, Ya Zhang
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:27367-27377, 2022.

Abstract

Self-supervised learning has achieved a great success in the representation learning of visual and textual data. However, the current methods are mainly validated on the well-curated datasets, which do not exhibit the real-world long-tailed distribution. Recent attempts to consider self-supervised long-tailed learning are made by rebalancing in the loss perspective or the model perspective, resembling the paradigms in the supervised long-tailed learning. Nevertheless, without the aid of labels, these explorations have not shown the expected significant promise due to the limitation in tail sample discovery or the heuristic structure design. Different from previous works, we explore this direction from an alternative perspective, i.e., the data perspective, and propose a novel Boosted Contrastive Learning (BCL) method. Specifically, BCL leverages the memorization effect of deep neural networks to automatically drive the information discrepancy of the sample views in contrastive learning, which is more efficient to enhance the long-tailed learning in the label-unaware context. Extensive experiments on a range of benchmark datasets demonstrate the effectiveness of BCL over several state-of-the-art methods. Our code is available at https://github.com/MediaBrain-SJTU/BCL.

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-zhou22l, title = {Contrastive Learning with Boosted Memorization}, author = {Zhou, Zhihan and Yao, Jiangchao and Wang, Yan-Feng and Han, Bo and Zhang, Ya}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {27367--27377}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/zhou22l/zhou22l.pdf}, url = {https://proceedings.mlr.press/v162/zhou22l.html}, abstract = {Self-supervised learning has achieved a great success in the representation learning of visual and textual data. However, the current methods are mainly validated on the well-curated datasets, which do not exhibit the real-world long-tailed distribution. Recent attempts to consider self-supervised long-tailed learning are made by rebalancing in the loss perspective or the model perspective, resembling the paradigms in the supervised long-tailed learning. Nevertheless, without the aid of labels, these explorations have not shown the expected significant promise due to the limitation in tail sample discovery or the heuristic structure design. Different from previous works, we explore this direction from an alternative perspective, i.e., the data perspective, and propose a novel Boosted Contrastive Learning (BCL) method. Specifically, BCL leverages the memorization effect of deep neural networks to automatically drive the information discrepancy of the sample views in contrastive learning, which is more efficient to enhance the long-tailed learning in the label-unaware context. Extensive experiments on a range of benchmark datasets demonstrate the effectiveness of BCL over several state-of-the-art methods. Our code is available at https://github.com/MediaBrain-SJTU/BCL.} }
Endnote
%0 Conference Paper %T Contrastive Learning with Boosted Memorization %A Zhihan Zhou %A Jiangchao Yao %A Yan-Feng Wang %A Bo Han %A Ya Zhang %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-zhou22l %I PMLR %P 27367--27377 %U https://proceedings.mlr.press/v162/zhou22l.html %V 162 %X Self-supervised learning has achieved a great success in the representation learning of visual and textual data. However, the current methods are mainly validated on the well-curated datasets, which do not exhibit the real-world long-tailed distribution. Recent attempts to consider self-supervised long-tailed learning are made by rebalancing in the loss perspective or the model perspective, resembling the paradigms in the supervised long-tailed learning. Nevertheless, without the aid of labels, these explorations have not shown the expected significant promise due to the limitation in tail sample discovery or the heuristic structure design. Different from previous works, we explore this direction from an alternative perspective, i.e., the data perspective, and propose a novel Boosted Contrastive Learning (BCL) method. Specifically, BCL leverages the memorization effect of deep neural networks to automatically drive the information discrepancy of the sample views in contrastive learning, which is more efficient to enhance the long-tailed learning in the label-unaware context. Extensive experiments on a range of benchmark datasets demonstrate the effectiveness of BCL over several state-of-the-art methods. Our code is available at https://github.com/MediaBrain-SJTU/BCL.
APA
Zhou, Z., Yao, J., Wang, Y., Han, B. & Zhang, Y.. (2022). Contrastive Learning with Boosted Memorization. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:27367-27377 Available from https://proceedings.mlr.press/v162/zhou22l.html.

Related Material