SpaceMAP: Visualizing High-Dimensional Data by Space Expansion

Xinrui Zu, Qian Tao
Proceedings of the 39th International Conference on Machine Learning, PMLR 162:27707-27723, 2022.

Abstract

Dimensionality reduction (DR) of high-dimensional data is of theoretical and practical interest in machine learning. However, there exist intriguing, non-intuitive discrepancies between the geometry of high- and low-dimensional space. We look into such discrepancies and propose a novel visualization method called Space-based Manifold Approximation and Projection (SpaceMAP). Our method establishes an analytical transformation on distance metrics between spaces to address the “crowding problem" in DR. With the proposed equivalent extended distance (EED), we are able to match the capacity of high- and low-dimensional space in a principled manner. To handle complex data with different manifold properties, we propose hierarchical manifold approximation to model the similarity function in a data-specific manner. We evaluated SpaceMAP on a range of synthetic and real datasets with varying manifold properties, and demonstrated its excellent performance in comparison with classical and state-of-the-art DR methods. In particular, the concept of space expansion provides a generic framework for understanding nonlinear DR methods including the popular t-distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and Projection

Cite this Paper


BibTeX
@InProceedings{pmlr-v162-zu22a, title = {{S}pace{MAP}: Visualizing High-Dimensional Data by Space Expansion}, author = {Zu, Xinrui and Tao, Qian}, booktitle = {Proceedings of the 39th International Conference on Machine Learning}, pages = {27707--27723}, year = {2022}, editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, volume = {162}, series = {Proceedings of Machine Learning Research}, month = {17--23 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v162/zu22a/zu22a.pdf}, url = {https://proceedings.mlr.press/v162/zu22a.html}, abstract = {Dimensionality reduction (DR) of high-dimensional data is of theoretical and practical interest in machine learning. However, there exist intriguing, non-intuitive discrepancies between the geometry of high- and low-dimensional space. We look into such discrepancies and propose a novel visualization method called Space-based Manifold Approximation and Projection (SpaceMAP). Our method establishes an analytical transformation on distance metrics between spaces to address the “crowding problem" in DR. With the proposed equivalent extended distance (EED), we are able to match the capacity of high- and low-dimensional space in a principled manner. To handle complex data with different manifold properties, we propose hierarchical manifold approximation to model the similarity function in a data-specific manner. We evaluated SpaceMAP on a range of synthetic and real datasets with varying manifold properties, and demonstrated its excellent performance in comparison with classical and state-of-the-art DR methods. In particular, the concept of space expansion provides a generic framework for understanding nonlinear DR methods including the popular t-distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and Projection} }
Endnote
%0 Conference Paper %T SpaceMAP: Visualizing High-Dimensional Data by Space Expansion %A Xinrui Zu %A Qian Tao %B Proceedings of the 39th International Conference on Machine Learning %C Proceedings of Machine Learning Research %D 2022 %E Kamalika Chaudhuri %E Stefanie Jegelka %E Le Song %E Csaba Szepesvari %E Gang Niu %E Sivan Sabato %F pmlr-v162-zu22a %I PMLR %P 27707--27723 %U https://proceedings.mlr.press/v162/zu22a.html %V 162 %X Dimensionality reduction (DR) of high-dimensional data is of theoretical and practical interest in machine learning. However, there exist intriguing, non-intuitive discrepancies between the geometry of high- and low-dimensional space. We look into such discrepancies and propose a novel visualization method called Space-based Manifold Approximation and Projection (SpaceMAP). Our method establishes an analytical transformation on distance metrics between spaces to address the “crowding problem" in DR. With the proposed equivalent extended distance (EED), we are able to match the capacity of high- and low-dimensional space in a principled manner. To handle complex data with different manifold properties, we propose hierarchical manifold approximation to model the similarity function in a data-specific manner. We evaluated SpaceMAP on a range of synthetic and real datasets with varying manifold properties, and demonstrated its excellent performance in comparison with classical and state-of-the-art DR methods. In particular, the concept of space expansion provides a generic framework for understanding nonlinear DR methods including the popular t-distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and Projection
APA
Zu, X. & Tao, Q.. (2022). SpaceMAP: Visualizing High-Dimensional Data by Space Expansion. Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:27707-27723 Available from https://proceedings.mlr.press/v162/zu22a.html.

Related Material