Example-Driven Model-Based Reinforcement Learning for Solving Long-Horizon Visuomotor Tasks

Bohan Wu, Suraj Nair, Li Fei-Fei, Chelsea Finn
Proceedings of the 5th Conference on Robot Learning, PMLR 164:1-13, 2022.

Abstract

In this paper, we study the problem of learning a repertoire of low-level skills from raw images that can be sequenced to complete long-horizon visuomotor tasks. Reinforcement learning (RL) is a promising approach for acquiring short-horizon skills autonomously. However, the focus of RL algorithms has largely been on the success of those individual skills, more so than learning and grounding a large repertoire of skills that can be sequenced to complete extended multi-stage tasks. The latter demands robustness and persistence, as errors in skills can compound over time, and may require the robot to have a number of primitive skills in its repertoire, rather than just one. To this end, we introduce EMBR, a model-based RL method for learning primitive skills that are suitable for completing long-horizon visuomotor tasks. EMBR learns and plans using a learned model, critic, and success classifier, where the success classifier serves both as a reward function for RL and as a grounding mechanism to continuously detect if the robot should retry a skill when unsuccessful or under perturbations. Further, the learned model is task-agnostic and trained using data from all skills, enabling the robot to efficiently learn a number of distinct primitives. These visuomotor primitive skills and their associated pre- and post-conditions can then be directly combined with off-the-shelf symbolic planners to complete long-horizon tasks. On a Franka Emika robot arm, we find that EMBR enables the robot to complete three long-horizon visuomotor tasks at 85% success rate, such as organizing an office desk, a file cabinet, and drawers, which require sequencing up to 12 skills, involve 14 unique learned primitives, and demand generalization to novel objects.

Cite this Paper


BibTeX
@InProceedings{pmlr-v164-wu22a, title = {Example-Driven Model-Based Reinforcement Learning for Solving Long-Horizon Visuomotor Tasks}, author = {Wu, Bohan and Nair, Suraj and Fei-Fei, Li and Finn, Chelsea}, booktitle = {Proceedings of the 5th Conference on Robot Learning}, pages = {1--13}, year = {2022}, editor = {Faust, Aleksandra and Hsu, David and Neumann, Gerhard}, volume = {164}, series = {Proceedings of Machine Learning Research}, month = {08--11 Nov}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v164/wu22a/wu22a.pdf}, url = {https://proceedings.mlr.press/v164/wu22a.html}, abstract = {In this paper, we study the problem of learning a repertoire of low-level skills from raw images that can be sequenced to complete long-horizon visuomotor tasks. Reinforcement learning (RL) is a promising approach for acquiring short-horizon skills autonomously. However, the focus of RL algorithms has largely been on the success of those individual skills, more so than learning and grounding a large repertoire of skills that can be sequenced to complete extended multi-stage tasks. The latter demands robustness and persistence, as errors in skills can compound over time, and may require the robot to have a number of primitive skills in its repertoire, rather than just one. To this end, we introduce EMBR, a model-based RL method for learning primitive skills that are suitable for completing long-horizon visuomotor tasks. EMBR learns and plans using a learned model, critic, and success classifier, where the success classifier serves both as a reward function for RL and as a grounding mechanism to continuously detect if the robot should retry a skill when unsuccessful or under perturbations. Further, the learned model is task-agnostic and trained using data from all skills, enabling the robot to efficiently learn a number of distinct primitives. These visuomotor primitive skills and their associated pre- and post-conditions can then be directly combined with off-the-shelf symbolic planners to complete long-horizon tasks. On a Franka Emika robot arm, we find that EMBR enables the robot to complete three long-horizon visuomotor tasks at 85% success rate, such as organizing an office desk, a file cabinet, and drawers, which require sequencing up to 12 skills, involve 14 unique learned primitives, and demand generalization to novel objects.} }
Endnote
%0 Conference Paper %T Example-Driven Model-Based Reinforcement Learning for Solving Long-Horizon Visuomotor Tasks %A Bohan Wu %A Suraj Nair %A Li Fei-Fei %A Chelsea Finn %B Proceedings of the 5th Conference on Robot Learning %C Proceedings of Machine Learning Research %D 2022 %E Aleksandra Faust %E David Hsu %E Gerhard Neumann %F pmlr-v164-wu22a %I PMLR %P 1--13 %U https://proceedings.mlr.press/v164/wu22a.html %V 164 %X In this paper, we study the problem of learning a repertoire of low-level skills from raw images that can be sequenced to complete long-horizon visuomotor tasks. Reinforcement learning (RL) is a promising approach for acquiring short-horizon skills autonomously. However, the focus of RL algorithms has largely been on the success of those individual skills, more so than learning and grounding a large repertoire of skills that can be sequenced to complete extended multi-stage tasks. The latter demands robustness and persistence, as errors in skills can compound over time, and may require the robot to have a number of primitive skills in its repertoire, rather than just one. To this end, we introduce EMBR, a model-based RL method for learning primitive skills that are suitable for completing long-horizon visuomotor tasks. EMBR learns and plans using a learned model, critic, and success classifier, where the success classifier serves both as a reward function for RL and as a grounding mechanism to continuously detect if the robot should retry a skill when unsuccessful or under perturbations. Further, the learned model is task-agnostic and trained using data from all skills, enabling the robot to efficiently learn a number of distinct primitives. These visuomotor primitive skills and their associated pre- and post-conditions can then be directly combined with off-the-shelf symbolic planners to complete long-horizon tasks. On a Franka Emika robot arm, we find that EMBR enables the robot to complete three long-horizon visuomotor tasks at 85% success rate, such as organizing an office desk, a file cabinet, and drawers, which require sequencing up to 12 skills, involve 14 unique learned primitives, and demand generalization to novel objects.
APA
Wu, B., Nair, S., Fei-Fei, L. & Finn, C.. (2022). Example-Driven Model-Based Reinforcement Learning for Solving Long-Horizon Visuomotor Tasks. Proceedings of the 5th Conference on Robot Learning, in Proceedings of Machine Learning Research 164:1-13 Available from https://proceedings.mlr.press/v164/wu22a.html.

Related Material