ECONet: Efficient Convolutional Online Likelihood Network for Scribble-based Interactive Segmentation

Muhammad Asad, Lucas Fidon, Tom Vercauteren
Proceedings of The 5th International Conference on Medical Imaging with Deep Learning, PMLR 172:35-47, 2022.

Abstract

Automatic segmentation of lung lesions associated with COVID-19 in CT images requires large amount of annotated volumes. Annotations mandate expert knowledge and are time-intensive to obtain through fully manual segmentation methods. Additionally, lung lesions have large inter-patient variations, with some pathologies having similar visual appearance as healthy lung tissues. This poses a challenge when applying existing semi-automatic interactive segmentation techniques for data labelling. To address these challenges, we propose an efficient convolutional neural networks (CNNs) that can be learned online while the annotator provides scribble-based interaction. To accelerate learning from only the samples labelled through user-interactions, a patch-based approach is used for training the network. Moreover, we use weighted cross-entropy loss to address the class imbalance that may result from user-interactions. During online inference, the learned network is applied to the whole input volume using a fully convolutional approach. We compare our proposed method with state-of-the-art using synthetic scribbles and show that it outperforms existing methods on the task of annotating lung lesions associated with COVID-19, achieving 16% higher Dice score while reducing execution time by 3× and requiring 9000 lesser scribble-sbased labelled voxels. Due to the online learning aspect, our approach adapts quickly to user input, resulting in high quality segmentation labels. Source code for ECONet is available at: https://github.com/masadcv/ECONet-MONAILabel.

Cite this Paper


BibTeX
@InProceedings{pmlr-v172-asad22a, title = {ECONet: Efficient Convolutional Online Likelihood Network for Scribble-based Interactive Segmentation}, author = {Asad, Muhammad and Fidon, Lucas and Vercauteren, Tom}, booktitle = {Proceedings of The 5th International Conference on Medical Imaging with Deep Learning}, pages = {35--47}, year = {2022}, editor = {Konukoglu, Ender and Menze, Bjoern and Venkataraman, Archana and Baumgartner, Christian and Dou, Qi and Albarqouni, Shadi}, volume = {172}, series = {Proceedings of Machine Learning Research}, month = {06--08 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v172/asad22a/asad22a.pdf}, url = {https://proceedings.mlr.press/v172/asad22a.html}, abstract = {Automatic segmentation of lung lesions associated with COVID-19 in CT images requires large amount of annotated volumes. Annotations mandate expert knowledge and are time-intensive to obtain through fully manual segmentation methods. Additionally, lung lesions have large inter-patient variations, with some pathologies having similar visual appearance as healthy lung tissues. This poses a challenge when applying existing semi-automatic interactive segmentation techniques for data labelling. To address these challenges, we propose an efficient convolutional neural networks (CNNs) that can be learned online while the annotator provides scribble-based interaction. To accelerate learning from only the samples labelled through user-interactions, a patch-based approach is used for training the network. Moreover, we use weighted cross-entropy loss to address the class imbalance that may result from user-interactions. During online inference, the learned network is applied to the whole input volume using a fully convolutional approach. We compare our proposed method with state-of-the-art using synthetic scribbles and show that it outperforms existing methods on the task of annotating lung lesions associated with COVID-19, achieving 16% higher Dice score while reducing execution time by 3× and requiring 9000 lesser scribble-sbased labelled voxels. Due to the online learning aspect, our approach adapts quickly to user input, resulting in high quality segmentation labels. Source code for ECONet is available at: https://github.com/masadcv/ECONet-MONAILabel.} }
Endnote
%0 Conference Paper %T ECONet: Efficient Convolutional Online Likelihood Network for Scribble-based Interactive Segmentation %A Muhammad Asad %A Lucas Fidon %A Tom Vercauteren %B Proceedings of The 5th International Conference on Medical Imaging with Deep Learning %C Proceedings of Machine Learning Research %D 2022 %E Ender Konukoglu %E Bjoern Menze %E Archana Venkataraman %E Christian Baumgartner %E Qi Dou %E Shadi Albarqouni %F pmlr-v172-asad22a %I PMLR %P 35--47 %U https://proceedings.mlr.press/v172/asad22a.html %V 172 %X Automatic segmentation of lung lesions associated with COVID-19 in CT images requires large amount of annotated volumes. Annotations mandate expert knowledge and are time-intensive to obtain through fully manual segmentation methods. Additionally, lung lesions have large inter-patient variations, with some pathologies having similar visual appearance as healthy lung tissues. This poses a challenge when applying existing semi-automatic interactive segmentation techniques for data labelling. To address these challenges, we propose an efficient convolutional neural networks (CNNs) that can be learned online while the annotator provides scribble-based interaction. To accelerate learning from only the samples labelled through user-interactions, a patch-based approach is used for training the network. Moreover, we use weighted cross-entropy loss to address the class imbalance that may result from user-interactions. During online inference, the learned network is applied to the whole input volume using a fully convolutional approach. We compare our proposed method with state-of-the-art using synthetic scribbles and show that it outperforms existing methods on the task of annotating lung lesions associated with COVID-19, achieving 16% higher Dice score while reducing execution time by 3× and requiring 9000 lesser scribble-sbased labelled voxels. Due to the online learning aspect, our approach adapts quickly to user input, resulting in high quality segmentation labels. Source code for ECONet is available at: https://github.com/masadcv/ECONet-MONAILabel.
APA
Asad, M., Fidon, L. & Vercauteren, T.. (2022). ECONet: Efficient Convolutional Online Likelihood Network for Scribble-based Interactive Segmentation. Proceedings of The 5th International Conference on Medical Imaging with Deep Learning, in Proceedings of Machine Learning Research 172:35-47 Available from https://proceedings.mlr.press/v172/asad22a.html.

Related Material