EfficientCellSeg: Efficient Volumetric Cell Segmentation Using Context Aware Pseudocoloring

Royden Wagner, Karl Rohr
Proceedings of The 5th International Conference on Medical Imaging with Deep Learning, PMLR 172:1311-1321, 2022.

Abstract

Volumetric cell segmentation in fluorescence microscopy images is important to study a wide variety of cellular processes. Applications range from the analysis of cancer cells to behavioral studies of cells in the embryonic stage. Like in other computer vision fields, most recent methods use either large convolutional neural networks (CNNs) or vision transformer models (ViTs). Since the number of available 3D microscopy images is typically limited in applications, we take a different approach and introduce a small CNN for volumetric cell segmentation. Compared to previous CNN models for cell segmentation, our model is efficient and has an asymmetric encoder-decoder structure with very few parameters in the decoder. Training efficiency is further improved via transfer learning. In addition, we introduce Context Aware Pseudocoloring to exploit spatial context in z-direction of 3D images while performing volumetric cell segmentation slice-wise. We evaluated our method using different 3D datasets from the Cell Segmentation Benchmark of the Cell Tracking Challenge. Our segmentation method achieves top-ranking results, while our CNN model has an up to 25x lower number of parameters than other top-ranking methods. Code and pretrained models are available at: https://github.com/roydenwa/efficient-cell-seg.

Cite this Paper


BibTeX
@InProceedings{pmlr-v172-wagner22a, title = {EfficientCellSeg: Efficient Volumetric Cell Segmentation Using Context Aware Pseudocoloring}, author = {Wagner, Royden and Rohr, Karl}, booktitle = {Proceedings of The 5th International Conference on Medical Imaging with Deep Learning}, pages = {1311--1321}, year = {2022}, editor = {Konukoglu, Ender and Menze, Bjoern and Venkataraman, Archana and Baumgartner, Christian and Dou, Qi and Albarqouni, Shadi}, volume = {172}, series = {Proceedings of Machine Learning Research}, month = {06--08 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v172/wagner22a/wagner22a.pdf}, url = {https://proceedings.mlr.press/v172/wagner22a.html}, abstract = {Volumetric cell segmentation in fluorescence microscopy images is important to study a wide variety of cellular processes. Applications range from the analysis of cancer cells to behavioral studies of cells in the embryonic stage. Like in other computer vision fields, most recent methods use either large convolutional neural networks (CNNs) or vision transformer models (ViTs). Since the number of available 3D microscopy images is typically limited in applications, we take a different approach and introduce a small CNN for volumetric cell segmentation. Compared to previous CNN models for cell segmentation, our model is efficient and has an asymmetric encoder-decoder structure with very few parameters in the decoder. Training efficiency is further improved via transfer learning. In addition, we introduce Context Aware Pseudocoloring to exploit spatial context in z-direction of 3D images while performing volumetric cell segmentation slice-wise. We evaluated our method using different 3D datasets from the Cell Segmentation Benchmark of the Cell Tracking Challenge. Our segmentation method achieves top-ranking results, while our CNN model has an up to 25x lower number of parameters than other top-ranking methods. Code and pretrained models are available at: https://github.com/roydenwa/efficient-cell-seg.} }
Endnote
%0 Conference Paper %T EfficientCellSeg: Efficient Volumetric Cell Segmentation Using Context Aware Pseudocoloring %A Royden Wagner %A Karl Rohr %B Proceedings of The 5th International Conference on Medical Imaging with Deep Learning %C Proceedings of Machine Learning Research %D 2022 %E Ender Konukoglu %E Bjoern Menze %E Archana Venkataraman %E Christian Baumgartner %E Qi Dou %E Shadi Albarqouni %F pmlr-v172-wagner22a %I PMLR %P 1311--1321 %U https://proceedings.mlr.press/v172/wagner22a.html %V 172 %X Volumetric cell segmentation in fluorescence microscopy images is important to study a wide variety of cellular processes. Applications range from the analysis of cancer cells to behavioral studies of cells in the embryonic stage. Like in other computer vision fields, most recent methods use either large convolutional neural networks (CNNs) or vision transformer models (ViTs). Since the number of available 3D microscopy images is typically limited in applications, we take a different approach and introduce a small CNN for volumetric cell segmentation. Compared to previous CNN models for cell segmentation, our model is efficient and has an asymmetric encoder-decoder structure with very few parameters in the decoder. Training efficiency is further improved via transfer learning. In addition, we introduce Context Aware Pseudocoloring to exploit spatial context in z-direction of 3D images while performing volumetric cell segmentation slice-wise. We evaluated our method using different 3D datasets from the Cell Segmentation Benchmark of the Cell Tracking Challenge. Our segmentation method achieves top-ranking results, while our CNN model has an up to 25x lower number of parameters than other top-ranking methods. Code and pretrained models are available at: https://github.com/roydenwa/efficient-cell-seg.
APA
Wagner, R. & Rohr, K.. (2022). EfficientCellSeg: Efficient Volumetric Cell Segmentation Using Context Aware Pseudocoloring. Proceedings of The 5th International Conference on Medical Imaging with Deep Learning, in Proceedings of Machine Learning Research 172:1311-1321 Available from https://proceedings.mlr.press/v172/wagner22a.html.

Related Material