[edit]
Learned Half-Quadratic Splitting Network for MR Image Reconstruction
Proceedings of The 5th International Conference on Medical Imaging with Deep Learning, PMLR 172:1403-1412, 2022.
Abstract
Magnetic Resonance (MR) image reconstruction from highly undersampled $k$-space data is critical in accelerated MR imaging (MRI) techniques. In recent years, deep learning-based methods have shown great potential in this task. This paper proposes a learned half-quadratic splitting algorithm for MR image reconstruction and implements the algorithm in an unrolled deep learning network architecture. We compare the performance of our proposed method on a public cardiac MR dataset against DC-CNN, ISTANet$^+$ and LPDNet, and our method outperforms other methods in both quantitative results and qualitative results. Finally, we enlarge our model to achieve superior reconstruction quality, and the improvement is $1.00$ dB and $1.76$ dB over LPDNet in peak signal-to-noise ratio on $5\times$ and $10\times$ acceleration, respectively. Code for our method is publicly available at \url{https://github.com/hellopipu/HQS-Net.}