PhysioMTL: Personalizing Physiological Patterns using Optimal Transport Multi-Task Regression

Jiacheng Zhu, Gregory Darnell, Agni Kumar, Ding Zhao, Bo Li, Xuanlong Nguyen, Shirley You Ren
Proceedings of the Conference on Health, Inference, and Learning, PMLR 174:354-374, 2022.

Abstract

Heart rate variability (HRV) is a practical and noninvasive measure of autonomic nervous system activity, which plays an essential role in cardiovascular health. However, using HRV to assess physiology status is challenging. Even in clinical settings, HRV is sensitive to acute stressors such as physical activity, mental stress, hydration, alcohol, and sleep. Wearable devices provide convenient HRV measurements, but the irregularity of measurements and uncaptured stressors can bias conventional analytical methods. To better interpret HRV measurements for downstream healthcare applications, we learn a personalized diurnal rhythm as an accurate physiological indicator for each individual. We develop Physiological Multitask-Learning (PhysioMTL) by harnessing Optimal Transport theory within a Multitask-learning (MTL) framework. The proposed method learns an individual-specific predictive model from heterogeneous observations, and enables estimation of an optimal transport map that yields a push forward operation onto the demographic features for each task. Our model outperforms competing MTL methodologies on unobserved predictive tasks for synthetic and two real-world datasets. Specifically, our method provides remarkable prediction results on unseen held-out subjects given only $20%$ of the subjects in real-world observational studies. Furthermore, our model enables a counterfactual engine that generates the effect of acute stressors and chronic conditions on HRV rhythms.

Cite this Paper


BibTeX
@InProceedings{pmlr-v174-zhu22a, title = {PhysioMTL: Personalizing Physiological Patterns using Optimal Transport Multi-Task Regression}, author = {Zhu, Jiacheng and Darnell, Gregory and Kumar, Agni and Zhao, Ding and Li, Bo and Nguyen, Xuanlong and Ren, Shirley You}, booktitle = {Proceedings of the Conference on Health, Inference, and Learning}, pages = {354--374}, year = {2022}, editor = {Flores, Gerardo and Chen, George H and Pollard, Tom and Ho, Joyce C and Naumann, Tristan}, volume = {174}, series = {Proceedings of Machine Learning Research}, month = {07--08 Apr}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v174/zhu22a/zhu22a.pdf}, url = {https://proceedings.mlr.press/v174/zhu22a.html}, abstract = {Heart rate variability (HRV) is a practical and noninvasive measure of autonomic nervous system activity, which plays an essential role in cardiovascular health. However, using HRV to assess physiology status is challenging. Even in clinical settings, HRV is sensitive to acute stressors such as physical activity, mental stress, hydration, alcohol, and sleep. Wearable devices provide convenient HRV measurements, but the irregularity of measurements and uncaptured stressors can bias conventional analytical methods. To better interpret HRV measurements for downstream healthcare applications, we learn a personalized diurnal rhythm as an accurate physiological indicator for each individual. We develop Physiological Multitask-Learning (PhysioMTL) by harnessing Optimal Transport theory within a Multitask-learning (MTL) framework. The proposed method learns an individual-specific predictive model from heterogeneous observations, and enables estimation of an optimal transport map that yields a push forward operation onto the demographic features for each task. Our model outperforms competing MTL methodologies on unobserved predictive tasks for synthetic and two real-world datasets. Specifically, our method provides remarkable prediction results on unseen held-out subjects given only $20%$ of the subjects in real-world observational studies. Furthermore, our model enables a counterfactual engine that generates the effect of acute stressors and chronic conditions on HRV rhythms.} }
Endnote
%0 Conference Paper %T PhysioMTL: Personalizing Physiological Patterns using Optimal Transport Multi-Task Regression %A Jiacheng Zhu %A Gregory Darnell %A Agni Kumar %A Ding Zhao %A Bo Li %A Xuanlong Nguyen %A Shirley You Ren %B Proceedings of the Conference on Health, Inference, and Learning %C Proceedings of Machine Learning Research %D 2022 %E Gerardo Flores %E George H Chen %E Tom Pollard %E Joyce C Ho %E Tristan Naumann %F pmlr-v174-zhu22a %I PMLR %P 354--374 %U https://proceedings.mlr.press/v174/zhu22a.html %V 174 %X Heart rate variability (HRV) is a practical and noninvasive measure of autonomic nervous system activity, which plays an essential role in cardiovascular health. However, using HRV to assess physiology status is challenging. Even in clinical settings, HRV is sensitive to acute stressors such as physical activity, mental stress, hydration, alcohol, and sleep. Wearable devices provide convenient HRV measurements, but the irregularity of measurements and uncaptured stressors can bias conventional analytical methods. To better interpret HRV measurements for downstream healthcare applications, we learn a personalized diurnal rhythm as an accurate physiological indicator for each individual. We develop Physiological Multitask-Learning (PhysioMTL) by harnessing Optimal Transport theory within a Multitask-learning (MTL) framework. The proposed method learns an individual-specific predictive model from heterogeneous observations, and enables estimation of an optimal transport map that yields a push forward operation onto the demographic features for each task. Our model outperforms competing MTL methodologies on unobserved predictive tasks for synthetic and two real-world datasets. Specifically, our method provides remarkable prediction results on unseen held-out subjects given only $20%$ of the subjects in real-world observational studies. Furthermore, our model enables a counterfactual engine that generates the effect of acute stressors and chronic conditions on HRV rhythms.
APA
Zhu, J., Darnell, G., Kumar, A., Zhao, D., Li, B., Nguyen, X. & Ren, S.Y.. (2022). PhysioMTL: Personalizing Physiological Patterns using Optimal Transport Multi-Task Regression. Proceedings of the Conference on Health, Inference, and Learning, in Proceedings of Machine Learning Research 174:354-374 Available from https://proceedings.mlr.press/v174/zhu22a.html.

Related Material