Towards efficient representation identification in supervised learning

Kartik Ahuja, Divyat Mahajan, Vasilis Syrgkanis, Ioannis Mitliagkas
Proceedings of the First Conference on Causal Learning and Reasoning, PMLR 177:19-43, 2022.

Abstract

Humans have a remarkable ability to disentangle complex sensory inputs (e.g., image, text) into simple factors of variation (e.g., shape, color) without much supervision. This ability has inspired many works that attempt to solve the following question: how do we invert the data generation process to extract those factors with minimal or no supervision? Several works in the literature on non-linear independent component analysis have established this negative result; without some knowledge of the data generation process or appropriate inductive biases, it is impossible to perform this inversion. In recent years, a lot of progress has been made on disentanglement under structural assumptions, e.g., when we have access to auxiliary information that makes the factors of variation conditionally independent. However, existing work requires a lot of auxiliary information, e.g., in supervised classification, it prescribes that the number of label classes should be at least equal to the total dimension of all factors of variation. In this work, we depart from these assumptions and ask: a) How can we get disentanglement when the auxiliary information does not provide conditional independence over the factors of variation? b) Can we reduce the amount of auxiliary information required for disentanglement? For a class of models where auxiliary information does not ensure conditional independence, we show theoretically and experimentally that disentanglement (to a large extent) is possible even when the auxiliary information dimension is much less than the dimension of the true latent representation.

Cite this Paper


BibTeX
@InProceedings{pmlr-v177-ahuja22a, title = {Towards efficient representation identification in supervised learning}, author = {Ahuja, Kartik and Mahajan, Divyat and Syrgkanis, Vasilis and Mitliagkas, Ioannis}, booktitle = {Proceedings of the First Conference on Causal Learning and Reasoning}, pages = {19--43}, year = {2022}, editor = {Schölkopf, Bernhard and Uhler, Caroline and Zhang, Kun}, volume = {177}, series = {Proceedings of Machine Learning Research}, month = {11--13 Apr}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v177/ahuja22a/ahuja22a.pdf}, url = {https://proceedings.mlr.press/v177/ahuja22a.html}, abstract = {Humans have a remarkable ability to disentangle complex sensory inputs (e.g., image, text) into simple factors of variation (e.g., shape, color) without much supervision. This ability has inspired many works that attempt to solve the following question: how do we invert the data generation process to extract those factors with minimal or no supervision? Several works in the literature on non-linear independent component analysis have established this negative result; without some knowledge of the data generation process or appropriate inductive biases, it is impossible to perform this inversion. In recent years, a lot of progress has been made on disentanglement under structural assumptions, e.g., when we have access to auxiliary information that makes the factors of variation conditionally independent. However, existing work requires a lot of auxiliary information, e.g., in supervised classification, it prescribes that the number of label classes should be at least equal to the total dimension of all factors of variation. In this work, we depart from these assumptions and ask: a) How can we get disentanglement when the auxiliary information does not provide conditional independence over the factors of variation? b) Can we reduce the amount of auxiliary information required for disentanglement? For a class of models where auxiliary information does not ensure conditional independence, we show theoretically and experimentally that disentanglement (to a large extent) is possible even when the auxiliary information dimension is much less than the dimension of the true latent representation.} }
Endnote
%0 Conference Paper %T Towards efficient representation identification in supervised learning %A Kartik Ahuja %A Divyat Mahajan %A Vasilis Syrgkanis %A Ioannis Mitliagkas %B Proceedings of the First Conference on Causal Learning and Reasoning %C Proceedings of Machine Learning Research %D 2022 %E Bernhard Schölkopf %E Caroline Uhler %E Kun Zhang %F pmlr-v177-ahuja22a %I PMLR %P 19--43 %U https://proceedings.mlr.press/v177/ahuja22a.html %V 177 %X Humans have a remarkable ability to disentangle complex sensory inputs (e.g., image, text) into simple factors of variation (e.g., shape, color) without much supervision. This ability has inspired many works that attempt to solve the following question: how do we invert the data generation process to extract those factors with minimal or no supervision? Several works in the literature on non-linear independent component analysis have established this negative result; without some knowledge of the data generation process or appropriate inductive biases, it is impossible to perform this inversion. In recent years, a lot of progress has been made on disentanglement under structural assumptions, e.g., when we have access to auxiliary information that makes the factors of variation conditionally independent. However, existing work requires a lot of auxiliary information, e.g., in supervised classification, it prescribes that the number of label classes should be at least equal to the total dimension of all factors of variation. In this work, we depart from these assumptions and ask: a) How can we get disentanglement when the auxiliary information does not provide conditional independence over the factors of variation? b) Can we reduce the amount of auxiliary information required for disentanglement? For a class of models where auxiliary information does not ensure conditional independence, we show theoretically and experimentally that disentanglement (to a large extent) is possible even when the auxiliary information dimension is much less than the dimension of the true latent representation.
APA
Ahuja, K., Mahajan, D., Syrgkanis, V. & Mitliagkas, I.. (2022). Towards efficient representation identification in supervised learning. Proceedings of the First Conference on Causal Learning and Reasoning, in Proceedings of Machine Learning Research 177:19-43 Available from https://proceedings.mlr.press/v177/ahuja22a.html.

Related Material