Same Cause; Different Effects in the Brain

Mariya Toneva, Jennifer Williams, Anand Bollu, Christoph Dann, Leila Wehbe
Proceedings of the First Conference on Causal Learning and Reasoning, PMLR 177:787-825, 2022.

Abstract

To study information processing in the brain, neuroscientists manipulate experimental stimuli while recording participant brain activity. They can then use encoding models to find out which brain "zone" (e.g. which region of interest, volume pixel or electrophysiology sensor) is predicted from the stimulus properties. Given the assumptions underlying this setup, when stimulus properties are predictive of the activity in a zone, these properties are understood to cause activity in that zone. In recent years, researchers have used neural networks to construct representations that capture the diverse properties of complex stimuli, such as natural language or natural images. Encoding models built using these high-dimensional representations are often able to significantly predict the activity in large swathes of cortex, suggesting that the activity in all these brain zones is caused by stimulus properties captured in the representation. It is then natural to ask: "Is the activity in these different brain zones caused by the stimulus properties in the same way?" In neuroscientific terms, this corresponds to asking if these different zones process the stimulus properties in the same way. Here, we propose a new framework that enables researchers to ask if the properties of a stimulus affect two brain zones in the same way. We use simulated data and two real fMRI datasets with complex naturalistic stimuli to show that our framework enables us to make such inferences. Our inferences are strikingly consistent between the two datasets, indicating that the proposed framework is a promising new tool for neuroscientists to understand how information is processed in the brain.

Cite this Paper


BibTeX
@InProceedings{pmlr-v177-toneva22a, title = {Same Cause; Different Effects in the Brain}, author = {Toneva, Mariya and Williams, Jennifer and Bollu, Anand and Dann, Christoph and Wehbe, Leila}, booktitle = {Proceedings of the First Conference on Causal Learning and Reasoning}, pages = {787--825}, year = {2022}, editor = {Schölkopf, Bernhard and Uhler, Caroline and Zhang, Kun}, volume = {177}, series = {Proceedings of Machine Learning Research}, month = {11--13 Apr}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v177/toneva22a/toneva22a.pdf}, url = {https://proceedings.mlr.press/v177/toneva22a.html}, abstract = {To study information processing in the brain, neuroscientists manipulate experimental stimuli while recording participant brain activity. They can then use encoding models to find out which brain "zone" (e.g. which region of interest, volume pixel or electrophysiology sensor) is predicted from the stimulus properties. Given the assumptions underlying this setup, when stimulus properties are predictive of the activity in a zone, these properties are understood to cause activity in that zone. In recent years, researchers have used neural networks to construct representations that capture the diverse properties of complex stimuli, such as natural language or natural images. Encoding models built using these high-dimensional representations are often able to significantly predict the activity in large swathes of cortex, suggesting that the activity in all these brain zones is caused by stimulus properties captured in the representation. It is then natural to ask: "Is the activity in these different brain zones caused by the stimulus properties in the same way?" In neuroscientific terms, this corresponds to asking if these different zones process the stimulus properties in the same way. Here, we propose a new framework that enables researchers to ask if the properties of a stimulus affect two brain zones in the same way. We use simulated data and two real fMRI datasets with complex naturalistic stimuli to show that our framework enables us to make such inferences. Our inferences are strikingly consistent between the two datasets, indicating that the proposed framework is a promising new tool for neuroscientists to understand how information is processed in the brain. } }
Endnote
%0 Conference Paper %T Same Cause; Different Effects in the Brain %A Mariya Toneva %A Jennifer Williams %A Anand Bollu %A Christoph Dann %A Leila Wehbe %B Proceedings of the First Conference on Causal Learning and Reasoning %C Proceedings of Machine Learning Research %D 2022 %E Bernhard Schölkopf %E Caroline Uhler %E Kun Zhang %F pmlr-v177-toneva22a %I PMLR %P 787--825 %U https://proceedings.mlr.press/v177/toneva22a.html %V 177 %X To study information processing in the brain, neuroscientists manipulate experimental stimuli while recording participant brain activity. They can then use encoding models to find out which brain "zone" (e.g. which region of interest, volume pixel or electrophysiology sensor) is predicted from the stimulus properties. Given the assumptions underlying this setup, when stimulus properties are predictive of the activity in a zone, these properties are understood to cause activity in that zone. In recent years, researchers have used neural networks to construct representations that capture the diverse properties of complex stimuli, such as natural language or natural images. Encoding models built using these high-dimensional representations are often able to significantly predict the activity in large swathes of cortex, suggesting that the activity in all these brain zones is caused by stimulus properties captured in the representation. It is then natural to ask: "Is the activity in these different brain zones caused by the stimulus properties in the same way?" In neuroscientific terms, this corresponds to asking if these different zones process the stimulus properties in the same way. Here, we propose a new framework that enables researchers to ask if the properties of a stimulus affect two brain zones in the same way. We use simulated data and two real fMRI datasets with complex naturalistic stimuli to show that our framework enables us to make such inferences. Our inferences are strikingly consistent between the two datasets, indicating that the proposed framework is a promising new tool for neuroscientists to understand how information is processed in the brain.
APA
Toneva, M., Williams, J., Bollu, A., Dann, C. & Wehbe, L.. (2022). Same Cause; Different Effects in the Brain. Proceedings of the First Conference on Causal Learning and Reasoning, in Proceedings of Machine Learning Research 177:787-825 Available from https://proceedings.mlr.press/v177/toneva22a.html.

Related Material