[edit]
Private and polynomial time algorithms for learning Gaussians and beyond
Proceedings of Thirty Fifth Conference on Learning Theory, PMLR 178:1075-1076, 2022.
Abstract
We present a fairly general framework for reducing $(\varepsilon, \delta)$-differentially private (DP) statistical estimation to its non-private counterpart. As the main application of this framework, we give a polynomial time and $(\varepsilon,\delta)$-DP algorithm for learning (unrestricted) Gaussian distributions in $\mathbb{R}^d$. The sample complexity of our approach for learning the Gaussian up to total variation distance $\alpha$ is $\tilde{O}(d^2/\alpha^2 + d^2\sqrt{\ln(1/\delta)}/\alpha \eps + d\ln(1/\delta) / \alpha \eps)$ matching (up to logarithmic factors) the best known information-theoretic (non-efficient) sample complexity upper bound due to Aden-Ali, Ashtiani, and Kamath (2021). In an independent work, Kamath, Mouzakis, Singhal, Steinke, and Ullman (2021) proved a similar result using a different approach and with $O(d^{5/2})$ sample complexity dependence on $d$. As another application of our framework, we provide the first polynomial time $(\varepsilon, \delta)$-DP algorithm for robust learning of (unrestricted) Gaussians with sample complexity $\tilde{O}(d^{3.5})$. In another independent work, Kothari, Manurangsi, and Velingker (2021) also provided a polynomial time $(\epsilon, \delta)$-DP algorithm for robust learning of Gaussians with sample complexity $\tilde{O}(d^8)$.