[edit]

# Towards a Theory of Non-Log-Concave Sampling:First-Order Stationarity Guarantees for Langevin Monte Carlo

*Proceedings of Thirty Fifth Conference on Learning Theory*, PMLR 178:2896-2923, 2022.

#### Abstract

For the task of sampling from a density $\pi \propto \exp(-V)$ on $\R^d$, where $V$ is possibly non-convex but $L$-gradient Lipschitz, we prove that averaged Langevin Monte Carlo outputs a sample with $\varepsilon$-relative Fisher information after $O(L^2 d^2/\varepsilon^2)$ iterations. This is the sampling analogue of complexity bounds for finding an $\varepsilon$-approximate first-order stationary points in non-convex optimization and therefore constitutes a first step towards the general theory of non-log-concave sampling. We discuss numerous extensions and applications of our result; in particular, it yields a new state-of-the-art guarantee for sampling from distributions which satisfy a PoincarĂ© inequality.