[edit]
Making SGD Parameter-Free
Proceedings of Thirty Fifth Conference on Learning Theory, PMLR 178:2360-2389, 2022.
Abstract
We develop an algorithm for parameter-free stochastic convex optimization (SCO) whose rate of convergence is only a double-logarithmic factor larger than the optimal rate for the corresponding known-parameter setting. In contrast, the best previously known rates for parameter-free SCO are based on online parameter-free regret bounds, which contain unavoidable excess logarithmic terms compared to their known-parameter counterparts. Our algorithm is conceptually simple, has high-probability guarantees, and is also partially adaptive to unknown gradient norms, smoothness, and strong convexity. At the heart of our results is a novel parameter-free certificate for SGD step size choice, and a time-uniform concentration result that assumes no a-priori bounds on SGD iterates.