[edit]
An Efficient Minimax Optimal Estimator For Multivariate Convex Regression
Proceedings of Thirty Fifth Conference on Learning Theory, PMLR 178:1510-1546, 2022.
Abstract
We study the computational aspects of the task of multivariate convex regression in dimension $d \geq 5$. We present the first computationally efficient minimax optimal (up to logarithmic factors) estimators for the tasks of $L$-Lipschitz and $\Gamma$-bounded convex regression under polytopal support. This work is the first to show the existence of efficient minimax optimal estimators for non-Donsker classes whose corresponding Least Squares Estimators are provably minimax suboptimal. The proof of the correctness of these estimators uses a variety of tools from different disciplines, among them empirical process theory, stochastic geometry, and potential theory.