[edit]

# Horizon-Free Reinforcement Learning in Polynomial Time: the Power of Stationary Policies

*Proceedings of Thirty Fifth Conference on Learning Theory*, PMLR 178:3858-3904, 2022.

#### Abstract

This paper gives the first polynomial-time algorithm for tabular Markov Decision Processes (MDP) that enjoys a regret bound \emph{independent on the planning horizon}. Specifically, we consider tabular MDP with $S$ states, $A$ actions, a planning horizon $H$, total reward bounded by $1$, and the agent plays for $K$ episodes. We design an algorithm that achieves an $O\left(\mathrm{poly}(S,A,\log K)\sqrt{K}\right)$ regret in contrast to existing bounds which either has an additional $\mathrm{polylog}(H)$ dependency \citep{zhang2020reinforcement} or has an exponential dependency on $S$ \citep{li2021settling}. Our result relies on a sequence of new structural lemmas establishing the approximation power, stability, and concentration property of stationary policies, which can have applications in other problems related to Markov chains.