Single Trajectory Nonparametric Learning of Nonlinear Dynamics

Ingvar M Ziemann, Henrik Sandberg, Nikolai Matni
Proceedings of Thirty Fifth Conference on Learning Theory, PMLR 178:3333-3364, 2022.

Abstract

Given a single trajectory of a dynamical system, we analyze the performance of the nonparametric least squares estimator (LSE). More precisely, we give nonasymptotic expected $l^2$-distance bounds between the LSE and the true regression function, where expectation is evaluated on a fresh, counterfactual, trajectory. We leverage recently developed information-theoretic methods to establish the optimality of the LSE for nonparametric hypotheses classes in terms of supremum norm metric entropy and a subgaussian parameter. Next, we relate this subgaussian parameter to the stability of the underlying process using notions from dynamical systems theory. When combined, these developments lead to rate-optimal error bounds that scale as $T^{-1/(2+q)}$ for suitably stable processes and hypothesis classes with metric entropy growth of order $\delta^{-q}$. Here, $T$ is the length of the observed trajectory, $\delta \in \mathbb{R}_+$ is the packing granularity and $q\in (0,2)$ is a complexity term. Finally, we specialize our results to a number of scenarios of practical interest, such as Lipschitz dynamics, generalized linear models, and dynamics described by functions in certain classes of Reproducing Kernel Hilbert Spaces (RKHS).

Cite this Paper


BibTeX
@InProceedings{pmlr-v178-ziemann22a, title = {Single Trajectory Nonparametric Learning of Nonlinear Dynamics}, author = {Ziemann, Ingvar M and Sandberg, Henrik and Matni, Nikolai}, booktitle = {Proceedings of Thirty Fifth Conference on Learning Theory}, pages = {3333--3364}, year = {2022}, editor = {Loh, Po-Ling and Raginsky, Maxim}, volume = {178}, series = {Proceedings of Machine Learning Research}, month = {02--05 Jul}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v178/ziemann22a/ziemann22a.pdf}, url = {https://proceedings.mlr.press/v178/ziemann22a.html}, abstract = {Given a single trajectory of a dynamical system, we analyze the performance of the nonparametric least squares estimator (LSE). More precisely, we give nonasymptotic expected $l^2$-distance bounds between the LSE and the true regression function, where expectation is evaluated on a fresh, counterfactual, trajectory. We leverage recently developed information-theoretic methods to establish the optimality of the LSE for nonparametric hypotheses classes in terms of supremum norm metric entropy and a subgaussian parameter. Next, we relate this subgaussian parameter to the stability of the underlying process using notions from dynamical systems theory. When combined, these developments lead to rate-optimal error bounds that scale as $T^{-1/(2+q)}$ for suitably stable processes and hypothesis classes with metric entropy growth of order $\delta^{-q}$. Here, $T$ is the length of the observed trajectory, $\delta \in \mathbb{R}_+$ is the packing granularity and $q\in (0,2)$ is a complexity term. Finally, we specialize our results to a number of scenarios of practical interest, such as Lipschitz dynamics, generalized linear models, and dynamics described by functions in certain classes of Reproducing Kernel Hilbert Spaces (RKHS).} }
Endnote
%0 Conference Paper %T Single Trajectory Nonparametric Learning of Nonlinear Dynamics %A Ingvar M Ziemann %A Henrik Sandberg %A Nikolai Matni %B Proceedings of Thirty Fifth Conference on Learning Theory %C Proceedings of Machine Learning Research %D 2022 %E Po-Ling Loh %E Maxim Raginsky %F pmlr-v178-ziemann22a %I PMLR %P 3333--3364 %U https://proceedings.mlr.press/v178/ziemann22a.html %V 178 %X Given a single trajectory of a dynamical system, we analyze the performance of the nonparametric least squares estimator (LSE). More precisely, we give nonasymptotic expected $l^2$-distance bounds between the LSE and the true regression function, where expectation is evaluated on a fresh, counterfactual, trajectory. We leverage recently developed information-theoretic methods to establish the optimality of the LSE for nonparametric hypotheses classes in terms of supremum norm metric entropy and a subgaussian parameter. Next, we relate this subgaussian parameter to the stability of the underlying process using notions from dynamical systems theory. When combined, these developments lead to rate-optimal error bounds that scale as $T^{-1/(2+q)}$ for suitably stable processes and hypothesis classes with metric entropy growth of order $\delta^{-q}$. Here, $T$ is the length of the observed trajectory, $\delta \in \mathbb{R}_+$ is the packing granularity and $q\in (0,2)$ is a complexity term. Finally, we specialize our results to a number of scenarios of practical interest, such as Lipschitz dynamics, generalized linear models, and dynamics described by functions in certain classes of Reproducing Kernel Hilbert Spaces (RKHS).
APA
Ziemann, I.M., Sandberg, H. & Matni, N.. (2022). Single Trajectory Nonparametric Learning of Nonlinear Dynamics. Proceedings of Thirty Fifth Conference on Learning Theory, in Proceedings of Machine Learning Research 178:3333-3364 Available from https://proceedings.mlr.press/v178/ziemann22a.html.

Related Material