Efficient and accurate top-k recovery from choice data

Duc Nguyen
Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence, PMLR 180:1509-1518, 2022.

Abstract

The intersection of learning to rank and choice modeling is an active area of research with applications in e-commerce, information retrieval and the social sciences. In some applications such as recommendation systems, the statistician is primarily interested in recovering the set of the top ranked items from a large pool of items as efficiently as possible using passively collected discrete choice data, i.e., the user picks one item from a set of multiple items. Motivated by this practical consideration, we propose the choice-based Borda count algorithm as a fast and accurate ranking algorithm for top $K$-recovery i.e., correctly identifying all of the top $K$ items. We show that the choice-based Borda count algorithm has optimal sample complexity for top-$K$ recovery under a broad class of random utility models. We prove that in the limit, the choice-based Borda count algorithm produces the same top-$K$ estimate as the commonly used Maximum Likelihood Estimate method but the former’s speed and simplicity brings considerable advantages in practice. Experiments on both synthetic and real datasets show that the counting algorithm is competitive with commonly used ranking algorithms in terms of accuracy while being several orders of magnitude faster.

Cite this Paper


BibTeX
@InProceedings{pmlr-v180-nguyen22b, title = {Efficient and accurate top-k recovery from choice data}, author = {Nguyen, Duc}, booktitle = {Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence}, pages = {1509--1518}, year = {2022}, editor = {Cussens, James and Zhang, Kun}, volume = {180}, series = {Proceedings of Machine Learning Research}, month = {01--05 Aug}, publisher = {PMLR}, pdf = {https://proceedings.mlr.press/v180/nguyen22b/nguyen22b.pdf}, url = {https://proceedings.mlr.press/v180/nguyen22b.html}, abstract = {The intersection of learning to rank and choice modeling is an active area of research with applications in e-commerce, information retrieval and the social sciences. In some applications such as recommendation systems, the statistician is primarily interested in recovering the set of the top ranked items from a large pool of items as efficiently as possible using passively collected discrete choice data, i.e., the user picks one item from a set of multiple items. Motivated by this practical consideration, we propose the choice-based Borda count algorithm as a fast and accurate ranking algorithm for top $K$-recovery i.e., correctly identifying all of the top $K$ items. We show that the choice-based Borda count algorithm has optimal sample complexity for top-$K$ recovery under a broad class of random utility models. We prove that in the limit, the choice-based Borda count algorithm produces the same top-$K$ estimate as the commonly used Maximum Likelihood Estimate method but the former’s speed and simplicity brings considerable advantages in practice. Experiments on both synthetic and real datasets show that the counting algorithm is competitive with commonly used ranking algorithms in terms of accuracy while being several orders of magnitude faster.} }
Endnote
%0 Conference Paper %T Efficient and accurate top-k recovery from choice data %A Duc Nguyen %B Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence %C Proceedings of Machine Learning Research %D 2022 %E James Cussens %E Kun Zhang %F pmlr-v180-nguyen22b %I PMLR %P 1509--1518 %U https://proceedings.mlr.press/v180/nguyen22b.html %V 180 %X The intersection of learning to rank and choice modeling is an active area of research with applications in e-commerce, information retrieval and the social sciences. In some applications such as recommendation systems, the statistician is primarily interested in recovering the set of the top ranked items from a large pool of items as efficiently as possible using passively collected discrete choice data, i.e., the user picks one item from a set of multiple items. Motivated by this practical consideration, we propose the choice-based Borda count algorithm as a fast and accurate ranking algorithm for top $K$-recovery i.e., correctly identifying all of the top $K$ items. We show that the choice-based Borda count algorithm has optimal sample complexity for top-$K$ recovery under a broad class of random utility models. We prove that in the limit, the choice-based Borda count algorithm produces the same top-$K$ estimate as the commonly used Maximum Likelihood Estimate method but the former’s speed and simplicity brings considerable advantages in practice. Experiments on both synthetic and real datasets show that the counting algorithm is competitive with commonly used ranking algorithms in terms of accuracy while being several orders of magnitude faster.
APA
Nguyen, D.. (2022). Efficient and accurate top-k recovery from choice data. Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence, in Proceedings of Machine Learning Research 180:1509-1518 Available from https://proceedings.mlr.press/v180/nguyen22b.html.

Related Material